
UCRL-WEB-201529

NFT Reference Manual

NFT Reference Manual - 1

Table of Contents

Preface 4
Introduction 5
How to Run NFT 6

Basic Execution 6
Basic NFT Features 7
Basic Examples 10

NFT Pathname Syntax 12
NFT Commands Summarized 15

General and Storage-Defaulted Commands 15
Environment-Variable Settings 16
Synchronous and Asynchronous Command Modes 17
Local, Immediate, and Job Commands 19

Local (Client) Commands 19
Server Commands 20

Immediate Commands 20
Job Commands 20

Input and Output Files 21
NFT Output (Log) Files 21

Using LOG and CLOG 21
NFT Logging Techniques and Examples 21

NFT Input Files 23
File Input by Redirection 23
File Input Using SOURCE 23
Logging Jointly with Input Files 24

Job Status and Reporting 25
NFT Job Numbers and Classes 25

Using Job Numbers 25
Job Class Hierarchy 26

Job Reporting with RPT 27
Scope 27
Format and Examples 28

Diagnostic Verbosity 30
NFT Sessions 32

Grouping Jobs by Session 32
One Client, Multiple Sessions 32
Multiple Clients, Multiple Sessions 34

Using NFT in Scripts 36
NFT Command Dictionary 38

Command Syntax Advice 38
ABT (Abort Incomplete Jobs) 39
ASYNC (Run Jobs in Parallel) 41
BLOCK (Block or Delay Next Command) 42
CD (Change Working Directory) 43

NFT Reference Manual - 2

CDUP (Change Working Directory Up) 44
CHGRP (Change Groups) 45
CHMOD (Change Permissions) 47
CHOWN (Change Owners) 48
CLOBBER (Enable File Overwriting) 49
CLOG (Close Log File) 50
CLOSE (Restore Remote Host) 50
CLR (Clear Completed Job Reports) 51
CP (Copy/Transfer Files) 53
DELETE (Remove Files) 55
DIR (List Directory Contents, Long) 57
ENDGR (End Asynchronous Group) 59
GET (Retrieve Stored Files) 60
GROUP (Begin Asynchronous Group) 62
HELP (Describe NFT Commands) 63
LCD (Change Local Working Directory) 64
LN (Create a Link) 65
LOG (Open Log File) 66
LS (List Directory Contents, Short) 67
MKDIR (Make Directories) 70
NOCLOBBER (Disable File Overwriting) 71
NOTERM (Disable Terminal Output) 72
OPEN (Change Remote Host) 73
PUT (Store Local Files) 75
PWD (Print Working Directory) 77
QUIT (Terminate NFT Client) 78
RENAME (Change File Name) 79
RMDIR (Remove Directories) 80
RPT (Report Job Status) 81
SESSION (Change NFT Sessions) 83
SETLEV (Change Security Level) 84
SOURCE (Use Command File) 85
STATUS (Report Environment Variables) 86
SYNC (Run Jobs in Series) 87
TERM (Enable Terminal Output) 88
TIME (Report Current Time) 88
VERBOSE (Control State-Change Reports) 89

Disclaimer 91
Keyword Index 92
Alphabetical List of Keywords 94
Date and Revisions 96

NFT Reference Manual - 3

Preface

Scope: The NFT Reference Manual describes in detail the syntax, commands, and special
features of the NFT (Network File Transport) file-transfer utility. NFT moves files
between machines with the help of a dedicated server that provides persistent,
passwordless transfers with elaborate job tracking. Extra support for file tranfers to
or from LC's archival storage system is also provided.

For a clear comparison of NFT's features with those of FTP and SCP, and for a concise,
task-oriented summary of how to use NFT for ordinary file transfers, see the
EZOUTPUT Basic Guide. (URL: http://www.llnl.gov/LCdocs/ezoutput)

For an overview of archival storage features at LC (open and secure), including access
issues, solutions to common storage problems, and NFT's role in using storage, see
the EZSTORAGE (URL: http://www.llnl.gov/LCdocs/ezstorage) Basic Guide.

Availability: NFT runs on LC's open and secure AIX (IBM SP), Linux/CHAOS, and Tru64 UNIX
(Compaq) production machines.

Note that besides the open and secure archival storage systems, only those machines
that support NFT clients (the ones listed here) also accept incoming file transfers
using NFT. Other hosts (such as FIS) do not accept NFT transfers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.scf.cln).

Printing: The print file for this document can be found at:

OCF: http://www.llnl.gov/LCdocs/nft/nft.pdf
SCF: https://lc.llnl.gov/LCdocs/nft/nft_scf.pdf

NFT Reference Manual - 4

http://www.llnl.gov/LCdocs/ezoutput
http://www.llnl.gov/LCdocs/ezstorage
http://www.llnl.gov/LCdocs/nft/nft.pdf

Introduction
NFT (Network File Transport) is a file-transfer utility developed at LC and tailored to local needs.

NFT features persistent, passwordless file transfer among worker machines and to the storage system in
both the open and secure environments. To monitor and confirm file transfers, NFT provides extensive
job-tracking aids. It also supports command files and easy use in batch jobs. (NFT's former support for
managing "access control lists" (ACLs) of stored files ended in September, 2004, because of incompatibilities
with the current version of HPSS.)

This document is the comprehensive reference manual for NFT. Consult the EZOUTPUT Basic Guide
(URL: http://www.llnl.gov/LCdocs/ezoutput) for a concise, task-oriented, introductory treatment of NFT
that compares it with FTP. Consult the EZSTORAGE (URL: http://www.llnl.gov/LCdocs/ezstorage) Basic
Guide for an overview of LC's archival storage system and of NFT's role in managing stored files
(alternatives to NFT for storage management are also explained). The FTP Reference Manual (URL:
http://www.llnl.gov/LCdocs/ftp) tells how standard FTP features, including storage access, are implemented
among LC production machines. If your file-transfer needs specifically involve placing many files into or
retrieving them from a remote archive (TAR-format library) file, consult the HTAR Reference Manual
(URL: http://www.llnl.gov/LCdocs/htar) for another LC-designed, locally deployed tool tailored to efficiently
managing large archives in storage or on any preauthenticated FTP server.

NFT Reference Manual - 5

http://www.llnl.gov/LCdocs/ezoutput
http://www.llnl.gov/LCdocs/ezstorage
http://www.llnl.gov/LCdocs/ftp
http://www.llnl.gov/LCdocs/htar

How to Run NFT

Basic Execution
To run NFT on any LC machine where it resides (see Availability (page ?)), type

nft [options]
where NFT's possible execute-line options are:

-Slev (uppercase ess) a formerly required option that formerly specified the session security
level lev. Storage system changes in 1997 cause the -S option to have no practical
effect at all, but NFT still accepts it just to prevent old scripts from breaking. If you
use this disabled option, there must be no space between S and lev, whose possible
values are:

1, u, or U designates an UNCLASSIFIED session.

2, p, or P designates a PARD (Protect As Restricted Data) session (the default
value, but ignored).

3, a, or A designates an ADMIN (Administrative) session.

4, c, or C designates a CONFIDENTIAL Restricted Data session.

5, s, or S designates a SECRET Restricted Data session.

-c enables checkpointing (off by default). This currently has no effect. See also -r.

-i ignores any .nftrc file. By default, as soon as it starts to execute, your NFT client
reads the file .nftrc (if any) in your home directory and immediately processes any
NFT commands it finds there, echoing their normal responses (if any) to your terminal.
This run-control file typically contains requests for nondefault environment-variable
settings (keyword: environment-variables (page 16)) or for automatic logging of your
NFT messages (keyword: log-files (page 21)).

-n outputs a newline character after each NFT prompt (omitted by default). This is
intended to facilitate the handling of PERL scripts, but it is not recommended for
ordinary interactive use.

-r disables checkpointing (off by default). This currently has no effect. See also -c.

NFT prompts for more input with the string nft> and you terminate your NFT client by typing QUIT
(or, less elegantly, CTRL-C). Even after you have stopped running your NFT client, however, the NFT
server will persistently execute any jobs (file-transfer requests) that have not yet completed (you can only
kill your incomplete NFT jobs by using NFT's ABT command).

NFT Reference Manual - 6

Basic NFT Features
DAEMONS.

Although NFT uses its own special server to schedule file-transfer requests and to persistently track them,
it uses the standard FTP daemons on the sending and receiving machines to actually carry out your file
transfers. Hence, some NFT commands (such as CHGRP or LN) may fail on some machines because the
local FTP daemons do not support them there.

BINARY TRANSFER.
All NFT file transfers use the FTP binary (image) mode. You cannot change to ASCII mode with any NFT
command.

PASSWORDS.
The NFT server preauthenticates your access to the machines where NFT works. Hence, all NFT file
transfers are passwordless.

LIMITS.
The longest pathname that NFT accepts is 1023 characters. (Remember also that many UNIX utilities limit
names to 16 characters.) The largest file that you can store using NFT is 512 Gbyte (use HTAR (URL:
http://www.llnl.gov/LCdocs/htar) to store and manage large archive files).

SYNTAX.
To specify the donor and target locations of files to transfer, NFT primarily uses a prefix or sentinel notation
somewhat like that used by SCP, rather than the login-based approach that FTP requires. For details on
and examples of this prefix file-specification syntax, see the Syntax section below, keyword: syntax (page
12). See the OPEN (page 73) command for a way to make NFT somewhat mimic the FTP login approach.

SPECIAL CHARACTERS.
Several characters have special roles when used with NFT:

semicolon (;) NFT recognizes the semicolon (;) as a command separator on its execute line or in
response to any NFT prompt (e.g., CLOBBER;PWD).

filters (? * [a-b])

The standard UNIX file filter (wild card) characters (? for single characters, * for any
string, and [a-b] for end points of a specified range) are all accepted within file names
by most NFT commands and can be used literally only if quoted (exceptions, where
the result would be ambiguous, are noted in the description of specific NFT commands
below).

filelists ({a,b,c})

NFT accepts these as a list of itemized file names a, b, and c.

other nonalphanumerics

- # ~
cannot appear as the FIRST character in any file name, but can be used in other
positions.

NFT Reference Manual - 7

http://www.llnl.gov/LCdocs/htar

, : }
must be quoted if they appear in any file name (e.g., 'a:b'), because each otherwise
has a special meaning for NFT.

quotes (' ") Quotes have two special roles for NFT:

Quoted
Commands

Matched quotes surrounding commands ONLY on NFT's execute
line allow promptless execution (e.g., see the Input Files (page 23)
section). NFT rejects quotes around any commands after its prompt
as a syntax error.

Quoted File
Names

Matched quotes surrounding any file name in an NFT command
(e.g., PUT 'a:b') can protect imbedded special characters in the name,
allowing them to behave as ordinary alphanumeric characters. But
note that this quote protection has two important limits:
(1) Quotes do NOT protect - # ~ in the first-character position.
(2) Quotes protect file-filter characters from NFT but NOT from
subsequent special handling by many FTP daemons, who treat them
as filters anyway.

COMMANDS.
To request and monitor file transfers, NFT uses interactive commands and environment-variable settings
quite like FTP. However, some commands (e.g., GET) have specialized, storage-only roles for NFT that
differ from their FTP roles. For details on the NFT commands, see the Command Summary (keyword:
command-summary (page 15)) or the much longer Command Dictionary (keyword: commands (page 38)).
When NFT's interactive commands have multiple, nonexclusive suboptions, you MUST concatenate all
your chosen suboptions with a single hypen (-) sentinel, not flag each with its own sentinel as UNIX usually
allows. Thus, for example, the correct form is

dir -FPt

and NOT the alternative

dir -F -P -t

which fails with a syntax error.

FILES.
To handle special situations, NFT can accept its input from files and send its output to files. For usage
instructions, see the section on NFT Files (keyword: files (page 21)).

JOB TRACKING.
NFT goes far beyond SCP or FTP in the elaborateness of its job tracking. Relevant features include uniquely
numbering each job; commands to report job status before, during, and even after completion; user control
of NFT's interactive messages about job progress; and ways to create and monitor "sessions" of related
jobs. For details, consult the Job Status and Reporting section (keyword: job-status (page 25)).

CLASSES OF SERVICE (STORED COPIES).

NFT Reference Manual - 8

NFT has no SETCOS command to set your storage "class of service" (COS). SETLEV is not the same as
SETCOS, and in fact you cannot alter your default storage class of service (COS) in any way with NFT.
See the SETCOS section of the HPSS Manual (URL: http://www.llnl.gov/LCdocs/hpss) for details. See
the "Copies in Storage" section of EZSTORAGE (URL: http://www.llnl.gov/LCdocs/ezstorage) for how
this affects the number of copies that HPSS keeps of files that you store with NFT. You can, however,
report a stored file's class of service by using the -h suboption of NFT's DIR command.

ERROR MESSAGES.
Most NFT messages about user errors (as illustrated in the example (page 10) dialog subsection below)
are sequentially numbered along with other NFT responses and begin with the string "error":

n.0 error explanation

However, if HPSS storage is down for planned servicing, then attempts to store files using NFT yield a
different error message with this special format:

 [SCF|OCF] HPSS Storage is down for maintenance.
 *** Try again later.

Scripts that execute NFT should check for this special "three-star" error message and avoid needlessly
resubmitting NFT jobs (storage requests) once it has been detected.

NFT Reference Manual - 9

http://www.llnl.gov/LCdocs/hpss
http://www.llnl.gov/LCdocs/ezstorage

Basic Examples
This annotated example shows typical file transfers using NFT.

GOAL: To transfer several files among (open) LC machines without logging on to all of the
machines, using NFT.

STRATEGY: (1) Start NFT (the formerly required security option -S is no longer needed or useful).
Notice that UNlike FTP, you do not log on to any particular remote host.
(2) For convenience, change the working directory on GPS02 to /usr/tmp (you could use
pathnames later and skip this step).
(3) Transfer (outward copy) local file t1 to /usr/tmp/t2 on GPS02.
(4) Transfer (inward copy) file /usr/tmp/t3 from GPS02 to local file t4.
(5) Without logging on to either GPS02 or GPS01, transfer (copy) /usr/tmp/t3 from GPS02
to ~/t6 on GPS01.
(6) Use storage-default command PUT to transfer file t1 from the client machine (where
NFT runs) to storage.llnl.gov as file t2. Note that NO hosts are specified in this command
because everything is defaulted.
(7) Try to retrieve file t8 from storage to local file t4 using the storage-default GET
command. Because NFT's default environment is NOCLOBBER, this attempt fails (t4
already exists as a result of step (4) above). You could use the CLOBBER option next,
to allow this overwrite, or...
(8) Use GET to retrieve t8 from storage with no name change (and hence no overwriting
of t4).

nft ---(1)

nft>cd gps02:/usr/tmp ---(2)
 remote host gps02: wd is /usr/tmp
nft>cp :t1 gps02:t2 ---(3)
 1.0. 95 bytes received in 0.1 seconds
 (0.7 Kbytes/s) from /g/g0/jfk/t1 to /usr/tmp/t2
 1 entry copied /g/g0/jfk/t1

nft>cp gps02:t3 :t4 ---(4)
 2.0. 98 bytes received in 0.1 seconds
 (1.1 Kbytes.s) from /usr/tmp/t3 to /g/g0/jfk/t4
 1 entry copied /usr/tmp/t3

nft>cp gps02:t3 gps01:t6 ---(5)
 3.0. 98 bytes received in 0.4 seconds
 (0.2 Kbytes/s) from /usr/tmp/t3 to /g/g0/jfk/t6
 1 entry copied /usr/tmp/t3

nft>put t1 t2 ---(6)
 4.0. 95 bytes sent in 1.0 seconds
 (0.1 Kbytes.s) from /g/g0/jfk/t1 to ~/t2
 1 entry copied /g/g0/jfk/t1

NFT Reference Manual - 10

nft>get t8 t4 ---(7)
 5.0. error. Cannot clobber existing
 sink /g/g0/jfk/t4

nft>get t8 ---(8)
 6.0. 95 bytes received in 1.8 seconds
 (0.1 Kbytes/s) from ~/t8 to /g/g0/jfk/t8
 1 entry copied ~/t8
nft>quit

NFT Reference Manual - 11

NFT Pathname Syntax
Because NFT sessions (unlike FTP sessions) do NOT begin with you logging on to a specific remote

host, you normally use NFT's pathname syntax to indicate each host (donor and receiver) involved in each
NFT command. This section explains that syntax. (NFT does offer an OPEN (page 73) command that
somewhat mimics FTP, but its use is atypical.)

An NFT pathname has three parts (some of which may be empty):

 PARTS: prefix body tail
 EXAMPLE: gps01:~jfk /dir1/dir2/ code3*.c

The latter two parts follow the usual UNIX rules for specifying directories, trees of directories, files, and
sets of files. File-filter wildcards (such as * and ?) and the special dot directories (. and ..) are allowed in
the standard ways.

The first part of the pathname (the prefix) is unique to NFT (though similar to the SCP style). This is
where you indicate the location (host) for the directories and files that you want NFT to transfer. There
are 12 possible alternative locations, generated by a 3-by-4 matrix of prefix choices, as the left side of this
chart reveals:

NFT-Specific Syntax | Usual UNIX Syntax
 |
 Prefix | Body Tail
 ------ | ---- ----
Any Any | Zero Zero
One One | or or
of then of | More More
These: These: | Directories Files
 | (. .. ok) or
 | Filters
: / |
host: ~ |
mt ~user |
 mt |
[mt="empty," NO
characters here]

where (1st column)

: (colon) indicates the local host (the machine on which you are running the NFT client).
For example :test3 indicates that file test3 is in the current working directory on the
local host.

host: indicates the specific (usually remote) host named. For example, gps01:test3 locates
test3 in the current working directory on GPS01, while gps02:/usr/tmp/test3 locates
test3 in the directory /usr/tmp on GPS02. Only hosts that have NFT clients themselves
are allowed here (see Availability (page ?)).

NFT Reference Manual - 12

mt (empty position, NO flag) indicates NFT's default host, which is the LC archival
storage system (storage.llnl.gov). WARNING: this is a significant difference from
FTP. Thus test3 locates file test3 in the current working directory on STORAGE, not
on the local host where you are running NFT.

and where (2nd column)

/ (slash) indicates the machine's root directory. For example, :/test3 locates test3 in the
root directory on the local machine (:).

~ (tilde) indicates the user's home directory (must be followed by / unless it is last in
the pathname). For example :~/test3 locates test3 in the user's home directory on the
local machine (:).

~user indicates the home directory of the person with login name user (must be followed
by / unless it is last in the pathname). For example, :~jfk/test3 locates test3 in the
home directory of user jfk on the local machine (:).

mt (empty position, NO flag) indicates the current working directory. For example test3
locates file test3 in the (default) current working directory on the (default) host
STORAGE.

This comparative example shows the 12 alternative locations for dd/ff that this NFT syntax can specify:

NFT Syntax Location of dd/ff
---------- -----------------
:/dd/ff local host, root
:~/dd/ff user's home
:~kk/dd/ff kk's home
:dd/ff current working dir.
hh:/dd/ff host hh, root
hh:~/dd/ff user's home
hh:~kk/dd/ff kk's home
hh:dd/ff current working dir.
/dd/ff storage, root
~/dd/ff user's home
~kk/dd/ff kk's home
dd/ff current working dir.

NFT Reference Manual - 13

Some NFT commands (such as PUT and GET) are dedicated by default to file transfers with STORAGE
(see keyword: storage-defaulted (page 15)). Because of this special role, the storage-defaulted commands
do NOT require, or even allow, use of the NFT prefix syntax to specify file locations. Storage-defaulted
NFT commands take standard UNIX pathnames as arguments, but the host on which any file resides is
specified solely by the command's definition (usually by the file's position in the argument list), never by
using an NFT locational prefix as shown here.

NFT Reference Manual - 14

NFT Commands Summarized
NFT commands fall into several different, overlapping groups, based on their scope of operation, their

file-transfer roles, and how they are processed during execution. Understanding these command groups
can improve the effectiveness with which you use NFT, especially for complex or unusual tasks.

General and Storage-Defaulted Commands
Most NFT commands are general in scope, and apply to any (secure) hosts that NFT serves, including

but not limited to STORAGE. DIR (to list files) and CP (to copy or transfer them between machines) are
examples of general NFT commands.

Some NFT commands are dedicated by default, however, to transferring files with STORAGE (such
as PUT) or manipulating stored files (such as LN). The storage-defaulted commands exist because
STORAGE is the primary file-transfer target for many NFT users and many NFT executions. These special
NFT commands

• do NOT accept (or need) the NFT prefix syntax to specify the location of files to be processed
(locations are specified by argument position, as with FTP), and

• can only be used for nonSTORAGE file transfers IF you precede their use with an OPEN (page 73)
command. NFT's OPEN somewhat mimics FTP's OPEN, but unlike FTP it is NOT required for most
NFT file-transfer operations (and is never required for storage-only operations). Even when you use
OPEN, some commands are still limited to storage-only use (as the table below shows).

This chart lists the NFT commands by their default scope (each command has a detailed explanation
in the command dictionary later in this manual, keyword: commands (page 38)).

Storage-Defaulted
Commands(+)

General NFT
Commands(*)

getcp, delete, ren
putdir, ls, pwd
lncd, cdup, lcd
chownmkdir, rmdir

abt, rpt, clr
block, group, endgr
open, close
help, quit, source, time
chmod, chgrp
source, time

(*)for additional commands (mostly toggles) that control the NFT file-transfer environment, see the next
section.
(+)using OPEN (page 73) lets you "generalize" GET and PUT to other remote hosts. But most hosts other
than STORAGE do not allow LN remotely. And CHOWN can never be generalized to any host except
STORAGE even after you use OPEN.

NFT Reference Manual - 15

Environment-Variable Settings
NFT provides several (pairs of) commands that do not directly perform file transfers or directory

changes but rather let you control the file-transfer environment by toggling between alternative states. For
each pair, one environment setting is NFT's default, as indicated in the table below (and the most noteworthy
default, NOCLOBBER, prevents NFT from overwriting any file with a transferred file of the same name).
The STATUS command reports the current settings. Two related environment commands also listed here
support many-way choices (not just two-way toggles) among verbosity levels and NFT session numbers.
SETLEV is a similar many-way NFT command that now has no practical effect. (Each command has a
detailed explanation in the command dictionary later in this manual, keyword: commands (page 38).)

Toggle CommandsNFT Environment Variables
sync (default, serially)Specify how multiple commands execute
async
noclobber (default, no
overwrite)

Resolve file-name conflicts (overwriting)

clobber
term (default, show)Display NFT output messages
noterm
clog (default, no log)Log all NFT input and output
log filename
verbose maskSpecify verbosity of output
session nn|newChange NFT session
statusReport current NFT environment

NFT Reference Manual - 16

Synchronous and Asynchronous Command Modes
The SYNC and ASYNC pair of commands overtly toggles NFT between two modes of executing

multiple requests or "jobs," but other ways to change command-execution modes also exist.

By default, NFT commands (and jobs) execute serially (in SYNC or synchronous mode). While
commands such as DIR and CD generally use so few resources as to execute (almost) at once, actual file
transfers (copies with CP) may be delayed by resource unavailability on the server or client machines.
Since it is obviously desirable to make or change directories before starting file transfers that depend on
those moves (for example), serial (SYNC) execution is generally quite appropriate.

NFT supports three exceptions to or exemptions from SYNC mode, however, in increasing order of
scope:

(1) GET/PUT:
When you use the storage-defaulted commands GET and PUT with file filters (* or ?) or with file lists,
NFT always processes the resulting multiple file-transfer requests in parallel (asynchronously), regardless
of the current SYNC/ASYNC mode setting.

(2) GROUP/ENDGR:
While remaining in SYNC mode, you can specify a subset of commands to process in parallel
(asynchronously among themselves) by preceding them with GROUP and following them with ENDGR.
To force all subsequent commands to wait until everything within such a GROUP has excuted, use BLOCK
after ENDGR and before the next command. For example, the NFT command sequence

 mkdir test3
 cd test3
 group
 cp gps02:file1 :file1
 cp gps01:file2 :file2
 cp gps15:file3 :file3
 endgr
 block
 rpt -a

first creates directory TEST3, then ASYNCHRONOUSLY copies three files into that directory (since
arrival order is often unimportant), then, and only after all three have arrrived (BLOCK), issues a report
(RPT).

(3) ASYNC:
The most general way to allow parallel NFT jobs is to use the ASYNC command. ASYNC cancels the
default SYNC mode and makes NFT execute ALL subsequent commands in parallel (asynchronously), as
soon as resources for them are available. BLOCK has no effect in ASYNC mode.

When you run NFT asynchronously, jobs are scheduled based on availability of the system resources
needed to perform them. They may not all start or run immediately. The point of this scheduling is to
prevent overloading the NFT server and its network connections.

NFT Reference Manual - 17

Most NFT jobs, such as directory listings, directory creation, or reports, require few resources and
receive immediate attention. Load balancing really becomes an issue only when you transfer files between
machines. Here the NFT scheduling algorithm is quite complex, but it is based on these factors:

• The number of current transfers from the donating host.

• The number of current transfers by the requesting user.

• The size of the file(s) being transferred.

• The supply of resources (e.g., disk space) at the source and sink of each file transfer.

NFT Reference Manual - 18

Local, Immediate, and Job Commands
NFT distinguishes between those commands executed locally, by your NFT client, and those executed

remotely, by the NFT server. Furthermore, among the server commands, NFT distinguishes between those
commands executed immediately and those ("job" commands) queued for persistent, numbered, monitored
execution.

 NFT commands
 executed by
 |
 |
 client-----------------server
 |
 |
 immediately---------queued (job)

Local (Client) Commands

Local (client) commands are those that are executed completely by the NFT client that you run. Because
the client, not the server, executes them, local commands have no NFT job numbers assigned to them. The
NFT local commands are:

clogclobberblock*async
helpgroupendgr*close+
open+notermnoclobberlog
sourcesetlevquitpwd
timetermsyncstatus

(*These commands do require communication with the server and use job numbers, but the numbers are
never seen by the user and no BEGIN, DONE, ERROR, or ACCEPTED messages are returned for them.)
(+The NEXT job (server-executed) command actually and pesistently makes the connection requested by
an OPEN or CLOSE local command that precedes it.)

NFT Reference Manual - 19

Server Commands

Immediate Commands

NFT immediate commands execute as soon as the NFT server receives them. They are not placed on
the standard job-execution queues as the regular job commands (next section) are. Any job subsequently
submitted to the server is affected by the previous immediate commands, but jobs submitted prior to an
immediate command will never be affected by it. The immediate server commands are:

rptclrabt
verbosesession

Job Commands

NFT job commands are server-executed commands each assigned a unique job number that you may
use to get information about the job or to abort the job later. These commands are automatically retried by
the NFT server when a temporary failure occurs because of network, host, or communication problems.
The NFT job commands are:

cpcdupcd
chownchmodchgrp
getdirdelete
lslnlcd
renameputmkdir

rmdir

NFT Reference Manual - 20

Input and Output Files

NFT Output (Log) Files

Using LOG and CLOG

NFT allows you to begin at any time recording in a log file all your input to and output messages from
the program as it runs. To start a log file, use the NFT command

 log pathname
where pathname is usually just the name of a file (e.g. nftlog) that you want NFT to create in the current
working directory (where NFT was started) on the machine where you are running the NFT client. If you
supply an absolute pathname (such as ~/projects/nftlog or /usr/tmp/testdir5/log5) then NFT creates the log
file in the other directory that you specify.

Logging of all NFT input and output continues until you issue the CLOG (close log) command or until
you QUIT your current NFT session, whichever comes first.

Issuing a second LOG command with a different pathname will (1) create a second, independent log
file, (2) stop recording messages in the first log file, and (3) start recording (subsequent) messages in the
second log file. Issuing a second LOG command with the same pathname will insert an updated time stamp
(comment) in the open log file and then simply append all new messages to the old ones. If a file named
pathname already exists when you first issue a LOG command, NFT opens it, appends a current time
stamp, and places all your new messages at the end of that file. Thus you can jump between multiple log
files during an NFT session, channeling messages to one and then another, just by using LOG with each
file's name whenever you want to change files.

NFT Logging Techniques and Examples

NFT does not collect a large buffer of messages before logging them; instead, messages are flushed to
the log file after every carriage return. Logging starts immediately, and the first line recorded in your log
file (after a comment-line date stamp) will be the LOG pathname command that requested the file. CLOG
will be the last line recorded. As long as you do not change the (default) TERM mode setting with a
NOTERM command, all your input and output will continue to display at your terminal while logging
occurs.

Every line in an NFT log file is annotated by a prefix that indicates its origin (for easy analysis later).
These log-file prefixes are:

indicates a comment (usually the date-time stamp at the start).

usr) indicates input from you at the terminal, for example,

 usr) get test3

NFT Reference Manual - 21

src) indicates input from a command file that you had NFT process by issuing the SOURCE
command. For example,

 src) get test3
came from a command file, not the keyboard (see below, keyword source-usage (page
23), for details).

) indicates output from NFT, such as a prompt or response to a command. For example,

) 48.0 95 bytes received in 1.8 seconds (0.1 Kbyte/s) test3
would be a typical logged response to the GET command shown above.

A sample of a short but typical NFT log file looks like this:

#
NFT log --- Fri Dec 19 13:42:49 2003
#
usr) log nftlog2
) nft>
usr) cd gps02:/usr/tmp
) remote host gps02: wd is /usr/tmp
) nft>
usr) cp :t1 gps02:t2
) 1.0. 95 bytes received in 0.1 seconds
) (0.7 Kbytes/s) from /g/g0/jfk/t1 to /usr/tmp/t2
) 1 entry copied /g/g0/jfk/t1
) nft>
usr) get t6
) 2.0. 95 bytes received in 1.8 seconds
) (0.1 Kbytes/s) from ~/t6 to /g/g0/jfk/t6
) 1 entry copied from ~/t6
) nft>
usr) clog

NFT Reference Manual - 22

NFT Input Files

File Input by Redirection

NFT accepts input from a command file on its execute line if you use the standard UNIX input redirection
symbol (<), as shown here:

 nft < commandfile

(You may include the formerly required security-level option -S lev along with the command file name on
the execute line, but it has no effect.) Here commandfile can be a simple name of a file in the current
directory (e.g., infile3), a pathname relative to that directory (such as projects/infile3), or an absolute
pathname (e.g., /usr/tmp/projects/infile3).

The command file should contain just the same NFT commands (and arguments) that you might type
at your terminal, one per line. Running NFT with a redirected input file alters its usual interactive behavior.
NFT executes the commands in the file silently, without echoing them. After all commands have started,
NFT automatically ends and you get the usual operating-system prompt. It passes status messages ("remote
wd is xxx") to your terminal at once, but any job-numbered transaction messages (about files sent or
received) that happen to arrive after the NFT client ends are lost (this could be all of them).

Superficially similar to file input by redirection on NFT's execute line is placing a quoted string of
(semicolon-delimited) commands on NFT's execute line, as shown here:

 nft "clobber;time;pwd;put test4"

This actually behaves more like file input using SOURCE (next section), however: the quoted commands
are not echoed, but the normal status and job-numbered transaction messages ARE echoed, and afterward
NFT does not end but simply prompts for more input (unless the last quoted command is QUIT).

File Input Using SOURCE

NFT also accepts input from a command file during any interactive session if you use the SOURCE
command in response to its nft> prompt:

 source commandfile

With SOURCE, as with file redirection, commandfile can be an absolute pathname such as
/usr/tmp/projects/infile3, as well as a relative pathname or a local file's name. And again, as with file
redirection, with SOURCE status messages continue to appear at your terminal while the commands in
the file execute, but you will see no command echoes and only those job-numbered transaction reports
(about files sent or received) that happen to arrive before your NFT client ends (and it could end quickly
if the last command in your file is QUIT).

NFT Reference Manual - 23

Usually the commands in a SOURCE command file are just what you might type at your terminal, one
per line. But you can construct condensed and annotated command files by using # as a comment sentinel,
semicolon as a command separator, and backslash (\) as a line-continuation flag. Thus

 clobber
 put test4
 get test6

and

 #shows special characters
 clobber;put test4;get tes\
 t6

are equivalent command files for use with SOURCE.

Logging Jointly with Input Files

You can log NFT output with the LOG and CLOG commands (keyword: log-files (page 21)) while
also providing input from a command file, but the captured results will be different than if you log a normal
terminal session.

If, while logging NFT output, you use SOURCE to issue commands from a file, both the SOURCEd
commands and the system's status messages will be included in the log file, even though the commands
would never appear at your terminal. Each is prefixed by src) in the log. But job-numbered transaction
reports will only appear in the log file if they would have arrived at the terminal while your NFT client
was still running (so often they are missing).

If you use input redirection on the NFT execute line, you can include LOG and CLOG among the
commands in the input file to record what happens. However, while your input commands (e.g., PUT test3)
and status messages will appear in the log file, only those job-numbered transaction reports that happen
to arrive before your client ends are captured in the log. If the redirected command file also contains a
SOURCE command within it (to include yet another command file), then each SOURCEd input line will
appear prefixed by src) in the log file.

NFT Reference Manual - 24

Job Status and Reporting

NFT Job Numbers and Classes

Using Job Numbers

Executing NFT begins a session (namely, session 0), and every NFT request (or job) in that session
has a unique integer job number, starting with 1 and increasing sequentially. The NFT server remembers
your past jobs for up to 4 days depending on NFT traffic (unless you flush their records with CLR or a
session has more than 499 job statuses), and during this interval it will not reuse the numbers of remembered
jobs. So frequent NFT users may find job numbers incremented by 1 from their most recent job rather than
starting at 1.

You can use each job's unique number to get information on its status in case it does not compelete
immediately (or at all). For example, to request the status of the job numbered 13, use NFT's RPT option:

 User: rpt 13
 Rtne: 13.0 error. Cannot clobber existing sink
 /g/g0/abc/test4

See the RPT section (keyword: job-reporting (page 27)) for details on other ways to request status reports.

For the special situation where you have jobs in multiple NFT sessions, with multiple job-numbering
sequences, see the Sessions section below (keyword: sessions (page 32)).

NFT Reference Manual - 25

Job Class Hierarchy

NFT classifies all jobs into 8 states (or job classes), shown here in their nested hierarchy:

 Class Member Jobs
 ----- -----------
 all all jobs that NFT remembers,
 regardless of state(*)

 incomplete jobs waiting to run or not
 finished running
 held jobs in the scheduling queue
 active jobs currently running

 complete successfully or unsuccessfully
 completed jobs
 okay successfully completed jobs
 error unsuccessfully completed jobs
 aborted jobs terminated by the user

(*)If you use multiple NFT "sessions," a special practice described in the Sessions section below (keyword:
sessions (page 32)), then ALL includes only jobs in the currently selected session, NOT in all the sessions
that you have created.

You can use NFT's RPT option to request status information for a whole class of jobs as well as for a
specific job number (see the next section, keyword: job-reporting (page 27)). The NFT server remembers
which class your jobs are in for about 4 days, but if you submit many jobs and want to monitor only the
newest and most interesting ones, you can flush or "clear" NFT job-status records (by job number or for
a whole class of jobs) using the CLR option.

NFT Reference Manual - 26

Job Reporting with RPT
You can at any time review the status of your NFT requests or jobs by using the RPT (report) option.

Two related options let you clear NFT status records no longer of interest (CLR) or abort jobs found to be
still incomplete (ABT). The NFT STATUS option reports on your environment-variable settings, not on
your file-transfer jobs.

Scope

RPT by default reports the status of your most recent job (in the currently selected NFT session). But
you can specify as RPT's argument a specific job number (n) or a range of numbers (n-m, using a hyphen,
not a comma, as separator) to get reports on just the jobs that you select. The Using Job Numbers section
above gives an example (keyword: job-numbers (page 25)).

In addition, RPT (with CLR and ABT) understands the 8 classes of NFT jobs described above (keyword:
job-classes (page 26)). Using a one-letter code for each job class, you can request status information on
all your jobs that belong to the class you select:

CLRABTRPTJob Class
-aall

-i-iincomplete
-h-hheld
-x-xactive

-c-ccomplete
-o-ookay
-e-eerror
-k-kaborted

Note that while you can report (RPT) on any class of job, you can only abort (ABT) incomplete jobs (held
or active) and you can only clear (CLR) the status records of completed jobs (okay, error, or aborted). See
the next section for a sample report (keyword: rpt-examples (page 28)).

Besides the job number(s) or job class(es) you select, three other factors are relevant to the scope of
RPT status reports:

(1) RECORD PERSISTENCE.
The NFT server remembers your jobs, their numbers, and their status for up to 4 days before purging its
records. So frequent NFT users will get reports on all members of a job class throughout this time range,
not just on the jobs started with their currently running NFT client. If this is a problem, use CLR to overtly
delete the old(er) records that are no longer of interest.

(2) SESSIONS.
Most NFT uses have only one NFT session, and RPT reports on the jobs (job class members) in that session.
If you start multiple sessions, RPT reports only on the jobs in your currently selected sesion, ignoring all
your jobs in other sessions. This can give you more control of your status reports or lead to confusion,
depending on your awareness of the sessions you have started. For details on the effect of multiple sessions,
see the Sessions section below (keyword: sessions (page 32)).

NFT Reference Manual - 27

(3) VERBOSITY.
The NFT VERBOSE option (keyword: verbose-levels (page 30)) lets you specify which state changes
NFT reports interactively as it runs (e.g., when jobs begin as well as when they end). VERBOSE does
NOT, however, affect which jobs (or job class members) NFT includes in RPT status reports, nor the
amount of detail provided on each job's status line. Thus VERBOSE does not change RPT's scope at all,
although it does change general NFT dialog.

Format and Examples

Most RPT status reports consist of one line per job reported, with the format

jnumFrnum. status info
 Example:
 12.0. done. ~/nfttest/test4

where

jnum is the unique integer number NFT assigned to this job.

F is a flag that indicates either a primary job (.) or a secondary job (/). A primary,
user-submitted job such as GET * may generate many secondary jobs, one for each
file retrieved.

rnum is NFT's retry count, which always starts at 0.

status is a standard status-reporting term (begin, done, error, start, accept).

info characterizes your specific job, for example, by giving the pathname of the file
retrieved or of the directory listed.

To illustrate a typical RPT job-status report on a class of jobs, assume that you have started an NFT
client and issued these commands:

 cd nfttest
 dir
 get test4
 clobber
 get test4

Then if you request a status report on all of these jobs by using

 rpt -a

NFT's response might look like this:

 11.0. done. ~/nfttest

NFT Reference Manual - 28

 12.0. done. ~/nfttest
 13.0. error. Cannot clobber existing sink
 /g/g0/abc/test4
 14.0. done. /g/g0/abc/test4

Note that your CLOBBER command, which does not involve any information transfer between machines,
is not treated as a numbered job by NFT and so is omitted from RPT's status report.

NFT Reference Manual - 29

Diagnostic Verbosity
NFT jobs pass through several states from submittal to completion, and you can control how finely

NFT reports on these changes of state by using its VERBOSE option. By default, NFT passes along transfer
statistics from the FTP daemon that actually moves files at NFT's request, as well as sending error and
abort diagnostic messages if a job completes unsuccessfully. But there are other state changes too, and you
can request messages about any or all of them by using the appropriate argument for VERBOSE. (VERBOSE
does not change the scope of jobs covered in status reports from RPT, nor the environment-variable setting
reports from STATUS.)

Each possible state change for an NFT job corresponds to one bit in a (32-bit) mask that VERBOSE
sets. You request diagnostic messages about a state change by setting its bit in the mask, and you set each
bit by using the decimal value shown in the table below. To request a combination of reports, ADD the
corresponding decimal values and use the sum as the argument for VERBOSE (for example, the default
combination of diagnostic messages corresponds to the sum 4+8+64=76).

Diagnostic
Meaning

Decimal
Value

State
Change

client has submitted job1Begin
job has completed successfully2Done
job has failed (unsuccessfully completed)4Error(*)
job was killed by user8Abort(*)
job was received by server16Accepted
----Reserved
FTP transfer amount and rate64Transfer

stats(*)
server has started job execution128Start
immediately reports in-progress errors in
secondary jobs

256Progress
errors

----Reserved

(*)Default verbosity (combination 76)

To see how changing the VERBOSE value changes the grain size of state-change reports during NFT
dialogs, compare this default-value exchange (VERBOSE 76)

 User: get test4
 Rtne: 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 nft>

with this maximum-value exchange for the same job (VERBOSE 479):

 User: get test4
 Rtne: 14.0. accept.

NFT Reference Manual - 30

 14.0. begin ~/test4
 14.0. start ~/test4
 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 14.0. done. /tmp/jfk/test4
 nft>

NFT Reference Manual - 31

NFT Sessions

Grouping Jobs by Session

Whenever you start an NFT client you start some NFT "session," with a unique (integer) session
identifier. (This is true even when you use quoted execute-line commands or input from a file, although
the absence of a prompt or echo can hide NFT's use of a session here.) By default your session is 0. The
NFT server associates the current session identifier with every job you submit during that session as part
of its persistent job tracking and execution. As a result, sessions provide another dimension along which
you can group jobs, independent of their job class (keyword: job-classes (page 26)), for monitoring and
analyzing their status. An NFT session is a logical set of jobs sharing the same session number. It is not
the same as an NFT client (one client can use several sessions), nor a sequence of jobs (some session jobs
may be asynchronous and mixed with other-session jobs), nor a time block (two sessions may overlap in
time).

This diagram shows the relationship between NFT job classes (used by the RPT job-status report option)
and job sessions:

 RPT
 ______________all___________
 incomplete complete
 held active ok error abort

 SESSION |
 session 0|
 jobs|
 | jobs
 session 1|
 jobs|
 |
 ... |

The diagram also suggests the prime reasons for invoking multiple sessions:

• To subdivide the jobs in a class (all complete jobs, all error jobs, etc.) between sessions for separate
status monitoring where you need such detail or extra control.

• To allow separate RPT reports, not intermixed, on two (or more) sets of secondary jobs. Thus running
a large GET * request in one session and a large PUT * request in another session would let you
generate separate RPT reports on the many subordinate file transfers of each without interference
with the other.

• To let you recover and inspect the RPT status reports on all the jobs in each session (perhaps including
jobs from several classes) independently of one another, even after your NFT client ends.

One Client, Multiple Sessions

TECHNIQUES.
You can start a new session at any time while running NFT by typing

NFT Reference Manual - 32

 session n

where n is an integer from 1 to 99 inclusive. This command closes your former NFT session (session 0 is
the default) and opens a new one, in which the new session number n is associated with all your subsequent
NFT commands. NFT numbers the jobs in each session with an increasing sequence of integers that ignores
all other sessions (so, e.g., each session may have an unrelated job numbered 13).

You can reopen a former session by using its session number in this same command (e.g., SESSION
0 reopens that session and closes session 1 if issued while you are in session 1). Reopening a session lets
you check on its jobs with RPT or start more jobs associated with it.

NFT gives no overt confirmation when you close one session and open another (just the usual prompt
for input). And RPT status reports do not reveal which session they cover. So to discover which session
is now open (or to confirm a requested change of session) use NFT's STATUS command, which reports
the current session number along with other NFT environment settings.

Because NFT remembers your session numbers for up to 4 days and because picking a session number
already in use reopens that session rather than creates a new one, you may sometimes want NFT to open
a new session by automatically picking a number for it that is guaranteed to be unused. To guarantee a
fresh session number, use

 session new

to which NFT responds with the message

 New Session: n

where n is the next unused (by you) session number available. As before, your previous session is now
closed and the nth session is now open.

EFFECTS.
NFT sessions group together jobs, not log messages or environment variable settings.

RPT scope RPT reports on the status of only those NFT jobs associated with the session open
when you issue the RPT command. To report on jobs in other sessions, you must first
reopen the session of interest, then type RPT. RPT does not accept session-number
arguments and its reports do not state which session number they cover (use STATUS).
Remember also that you may have several jobs with the same job number, one in
each of several independent sessions.

NFT Reference Manual - 33

LOG scope If you start recording your NFT interactions with LOG logfile, then logfile will continue
to collect messages in an unbroken sequence even if you open new sessions or reopen
old ones. You can change log files if you wish (keyword: log-files (page 21)), but
changing sessions does NOT automatically change or close log files, and you cannot
permanently assign separate log files to separate sessions. Sessions divide NFT jobs
while log files divide NFT messages.

environment-variable scope

Environment-variable settings (e.g., SYNC/ASYNC or NOCLOBBER/CLOBBER)
persist independently of NFT session changes. You cannot permanently assign some
settings to one session and different settings to another. Thus you cannot simply
declare one NOCLOBBER GET session and another CLOBBER PUT session, for
example, because each time you set that variable all (incomplete) jobs in all sessions
will be affected. Only by using separate NFT clients (not multiple sessions with one
client) can you have two sets of environment-variable settings for two sets of jobs at
once. See the next section for details.

Multiple Clients, Multiple Sessions

You can run several NFT clients at once (each in its own window, for example), but to do so you must
compensate for the way NFT manages sessions when the same user runs more than one client.

 Client 0 Client 1
 -------- --------
 Default: session 0 "steals"
 session 0
 To regain,
 you type: session 0 session 1

By default, your first NFT client (e.g., client 0) opens session 0. Executing a second NFT client (e.g.,
client 1) automatically transfers that open session to the second client. One result of this "session theft"
affects output messages, all of which are diverted from the first to the second NFT client. Another result
affects subsequent input (commands) to the first client. Attempts to execute more commands (other than
SESSION) yield a fatal error, terminating the NFT client:

 ***Panic. Another application instance
 has opened this session.

You can overcome this session theft and use both NFT clients with the help of NFT's SESSION
command, used either interactively or in batch runs:

INTERACTIVELY.
Issue SESSION 1 to the second client (client 1) to open a new, independent session for it. Then issue
SESSION 0 to the first client (client 0) to reopen or recover the lost session. Now both NFT clients will
separately accept and process input, keep logs, and report job status with RPT. They will also maintain
different NFT environment variable settings (e.g. NOCLOBBER for one, CLOBBER for the other) if you

NFT Reference Manual - 34

wish. In fact, only by using such separate NFT clients, each associated with a different NFT session, can
you have two sets of environment-variable settings for two sets of NFT jobs at once.

BATCH RUNS.
The above technique is not very practical if you want to execute several batch scripts at the same time,
each involving NFT, yet keep their NFT transactions separately recorded. Instead, invoke SESSION NEW
when you first run NFT in each script, for example,

nft "session new;log nftlog;status;clobber;put abc;quit"

This requests (and reports to your log file) a previously unused session number, so that your file-transfer
records end up segregated in that uniquely identified session. You can then reopen that same session (with
the SESSION n command) to accumulate records for every subsequent NFT execution in the same script,
or repeatedly use SESSION NEW for each NFT run.

Multiple clients, each with their own session, are usually used to divide NFT job streams so they can
be processed or recorded differently. But, if this is not your goal, you can pass NFT sessions back and
forth repeatedly between clients at any time simply by typing SESSION n to cause the current client to
open and feed its jobs into the nth session. NFT numbers jobs sequentially by session, NOT by client, so
exchanging sessions between clients in this way will allow both clients to contribute jobs, with one sequence
of job numbers, to one accumulating status record (per session) that RPT will report. See the Grouping
Jobs by Session section (keyword: session-scope (page 32)) for more details on how NFT sessions and
job-status reports interact.

NFT Reference Manual - 35

Using NFT in Scripts
Certain techniques and features scattered among various places in this manual are especially helpful

if you want to execute NFT within a script (for use as a batch job, for example) and then feed NFT a series
of (normally interactive) commands. This section summarizes these techniques for easy comparison,
roughly in order of increasing complexity, and offers cross reference links when details are available
elsewhere.

QUOTED COMMANDS.
Perhaps the easiest way to pass a series of commands to NFT noninteractively within a script is to
(1) separate the commands with semincolons and (2) quote the entire command sequence on NFT's execute
line. For example,

 nft "clobber;cd dir3;put test3;quit"

enables overwriting, changes storage directories to DIR3, saves file TEST3, and terminates NFT. You
must include QUIT at the end of such quoted command sequences to prevent NFT from prompting
interactively after it executes the other commands. For technical details, see the NFT Features (page 7)
and NFT Input Files (page 23) sections above.

HERE FILE.
Very like the foregoing technique is the use of a UNIX "here file" of command lines imbedded within your
larger shell script, initiated by << and delimited by a string of your choice (such as EOF). This example
"here file" duplicates the behavior of the quoted NFT commands in the previous paragraph:

 nft <<EOF
 clobber
 cd dir3
 put test3
 quit
 EOF

VARIABLE EVALUATION.
For more elaborate situations you may prefer to assign NFT command sequences to a script variable and
then evaluate that variable on the NFT execute line. For example, a PERL script might contain this fragment
(using the same NFT commands as before):

 $inn = "clobber;cd dir3; " .
 "put test3;quit";
 @out = 'nft "$inn"';

FILE REDIRECTION.
NFT provides two ways to execute already existing separate command files:
(1) the usual UNIX redirection of input, and

NFT Reference Manual - 36

(2) NFT's own SOURCE (read an input file) command. This approach allows you to reuse elaborate,
comment-annotated NFT command files, but those files are not part of the invoking script itself, posing a
possible file-management problem. For a comparison of the implementation details of these two external-file
approaches, see the NFT Input Files (page 23) section.

If actually completing (not just launching) all your NFT commands before starting your script's next
step is important to you, consider using NFT's BLOCK (page 42) command before you QUIT. And if
running several scripts with NFT commands at the same time is likely, or if you typically rerun a script
many times close together, then consider using NFT's SESSION NEW feature to help manage your NFT
record keeping. Review the NFT Sessions (page 32) section for a discussion of the relevant problems and
possible solutions.

NFT Reference Manual - 37

NFT Command Dictionary

Command Syntax Advice
The other subsections of this command dictionary explain each of NFT's (over 40) interactive commands

in alphabetical order. Comparisons and cross references indicate when several alphabetically scattered
commands are closely related to each other in function.

• See the much shorter Command Summary (page 15) for a concise overview of NFT commands
grouped by function instead of by name.

• See the How To Run NFT (page 6) section for instructions on how to start and operate the program.

• See the Basic NFT Features (page 7) section for length limits and special-character rules that apply
within the NFT commands you use.

NFT has several special syntactical features that affect how you can use its interactive commands:

CASE.
You can type all NFT commands in either lowercase or uppercase (e.g., status or STATUS). Of course,
command suboptions (such as -R) remain case sensitive as is typical of UNIX software.

CONCATENATION.
When NFT's interactive commands have multiple, nonexclusive suboptions, you MUST concatenate all
your chosen suboptions with a single hypen (-) sentinel, not flag each with its own sentinel as UNIX usually
allows. Thus, for example, the correct form is

dir -FPt

and NOT the alternative

dir -F -P -t

which fails with a syntax error.

ESCAPE.
While running NFT, you can use the exclamation mark (!) as an escape character (prefix) to execute any
ordinary UNIX shell command. Thus typing LN executes NFT's own LN command (on the STORAGE
system) but typing !LN executes the regular LN utility on the local (client) machine instead. Naturally,
these !-escaped commands get no NFT job numbers and are not persistently executed by the NFT server.

NFT Reference Manual - 38

ABT (Abort Incomplete Jobs)
SYNTAX:

abt [[n[-m]] | [-opt]]

ROLE:
Aborts (immediately ends) your most recent NFT request ("job") by default, or aborts your specific job
with unique job number n (an integer), or the range of jobs with numbers n-m inclusive (using a hyphen,
not a comma, as separator), or all members of the job class specified by any one job-class option opt listed
below.

You can only abort incomplete jobs (those either still held for scheduling or actively running). Attempting
to abort completed jobs has no effect, but will return the warning that "completed jobs were ignored."

You can use NFT's RPT (report) option to discover the job numbers of still-incomplete jobs that you
might want to abort. On the other hand, you need not wait for an RPT report, or even for the nft> input
prompt, to use ABT to prevent a just-issued erroneous command from completing. You can type ABT
immediately after starting some undesired NFT job, even before getting an input prompt, and (often) abort
that current job quickly.

ABT does not stop your current NFT client from running, just as QUITing or killing the client does
not stop the NFT server from completing any of your already submitted jobs.

RPT (page 81) (report) and CLR (page 51) (clear) are NFT commands closely related to ABT. The
NFT STATUS (page 86) command reports on your environment-variable settings, not on your file-transfer
jobs.

OPTIONS:
ABT accepts several job-class options opt to specify which set of your NFT jobs you want aborted. But
ABT expects you to use these options ONE at a time: combined options do not yield combined job classes
to be terminated. Possible stand-alone job-classes on which you can apply ABT include:

-a all jobs that NFT remembers, regardless of state. [If you use multiple NFT sessions
(page 32), a rare practice, then -a selects only jobs in the current session, NOT in all
the sessions that you have created, and the other job-class options behave likewise.]

-i incomplete jobs, waiting to run or not finished running.

-h held jobs, incomplete jobs in the scheduling queue.

-x active jobs, incomplete jobs currently running.

EXAMPLE:
A typical use of ABT to stop an inadvertantly started file transfer (in this case, immediately after it was
started, even before NFT returns another input prompt) is:

User: get test4
 abt

NFT Reference Manual - 39

Rtne: 5.0 aborted /g/g0/jfk/test4

NFT Reference Manual - 40

ASYNC (Run Jobs in Parallel)
SYNTAX:

async

ROLE:
Begins asynchronous mode. Since SYNC is the default setting whenever you run NFT, the ASYNC
command serves to cancel this default or any previous SYNC (page 87) command. In ASYNC mode, NFT
executes all your subsequent commands (jobs) in parallel, allowing any job to run in any order as soon as
resources are available.

Asynchronous execution on a limited scale also occurs for multi-file transfers using GET, PUT, or CP,
and for command sets flanked by GROUP (page 62) and ENDGR. The BLOCK (page 42) command has
no effect in ASYNC mode. See the command-sequencing (page 17) section above for a comparative
analysis of the three cases where NFT allows asynchronous command execution.

The SYNC (page 87) command cancels ASYNC mode. ASYNC has no options and returns no mode
confirmation, but you can use NFT's STATUS (page 86) command at any time to discover your current
SYNC/ASYNC setting, which persists even across logical NFT "sessions (page 32)."

NFT Reference Manual - 41

BLOCK (Block or Delay Next Command)
SYNTAX:

block

ROLE:
Prevents NFT from executing any more commands until all previously entered synchronous jobs have
completed. Thus BLOCK;QUIT will end NFT only after all pending jobs are done rather than QUITing
immediately (the default).

Synchronous (SYNC (page 87), sequential) command execution is the default whenever you run NFT,
but NFT does support these three exceptions to or exemptions from SYNC mode:

• multiple-file transfers using GET, PUT, or CP,

• command sets flanked by GROUP and ENDGR, and

• commands following ASYNC.

BLOCK has no effect in ASYNC mode, but using BLOCK immediately after any of these asynchronous
episodes ends will prevent the next command (which may depend on previous job completions for success)
from executing prematurely, as the example below shows. Also, if you start a new NFT session (page 32),
BLOCK is an easy, harmless way to confirm that the new job-sequence numbering has started.

BLOCK has no options and returns no confirmation.

EXAMPLE:
While remaining in SYNC mode, you can specify a subset of commands to process in parallel
(asynchronously among themselves) by preceding them with GROUP and following them with ENDGR.
To force all subsequent commands to wait until everything within such a GROUP has excuted, use BLOCK
after ENDGR and before the next command. For example, the NFT command sequence

 mkdir test3
 cd test3
 group
 cp gps02:file1 :file1
 cp gps01:file2 :file2
 cp gps15:file3 :file3
 endgr
 block
 rpt -a

first creates directory TEST3, then ASYNCHRONOUSLY copies three files into that directory (since
arrival order is often unimportant), then, and only after all three have arrrived (BLOCK), issues a report
(RPT).

NFT Reference Manual - 42

CD (Change Working Directory)
SYNTAX:

cd [host][pathname]

ROLE:
Changes the current working directory on the specified host to the specified pathname. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede CD with an
OPEN (page 73) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX path that defaults to your home directory.

So CD used with no arguments (and no OPEN) changes your current STORAGE directory to your
home directory. Use PWD (page 77) to discover the name of your current working directory, CDUP (page
44) to move up one directory level, and LCD (page 64) to change local (client-machine) directories. These
commands are somewhat redundant, so that

 CD :..
 CDUP :
 LCD ..

are exactly equivalent, and all require using NFT's own prefix syntax for hosts.

CD takes no options, and it confirms each requested directory change.

WARNING:
If you specify a nonexistent pathname for the UNIX CD command, you get an immediate error message
and no directory change. If you specify a nonexistent pathname for NFT's CD command, however, you
get the usual confirmation message before receiving the string "no such file or directory." And subsequent
use of PWD will also report the nonexistent directory, without complaint. Of course attempts to then use
DIR or actual file-transfer commands will fail. You must overtly reset the working directory with another
use of CD to a real location to overcome this error and continue transferring files.

EXAMPLE:
In response to each CD command, NFT reports both the machine involved and the new working directory
(wd), where the default remote machine is always STORAGE.

R/Us: nft> cd nfttest
Rtne: remote wd is ~/nfttest [on STORAGE]
R/Us: nft> cd :~
Rtne: local wd is /g/g0/jfk [on client machine]

NFT Reference Manual - 43

CDUP (Change Working Directory Up)
SYNTAX:

cdup [host]

ROLE:
Changes the current working directory on the specified host to the parent directory (one level up), where
host is the NFT host-specifying prefix that defaults to the STORAGE (not current client) machine, as
explained above (keyword: prefix (page 12)). If you precede CDUP with an OPEN (page 73) command,
then host defaults to the machine that OPEN specified.

So CDUP used with no arguments (and no OPEN) moves your current STORAGE directory one level
up. Use PWD (page 77) to discover the name of your current working directory, CD (page 43) to change
directories generally, and LCD (page 64) to change local (client-machine) directories. These commands
are somewhat redundant, so that

 CD :..
 CDUP :
 LCD ..

are exactly equivalent, and all require using NFT's own prefix syntax for hosts.

CDUP takes no options, and it confirms each requested directory change.

EXAMPLE:
In response to each CDUP command, NFT reports both the machine involved and the new working directory
(wd), where the default remote machine is always STORAGE.

R/Us: nft> cdup
Rtne: remote wd is ~ [on STORAGE]
R/Us: nft> cdup :
Rtne: local wd is /g/g0/jfk [on client machine]

NFT Reference Manual - 44

CHGRP (Change Groups)
SYNTAX:

chgrp [-R] group [host]filelist

ROLE:
changes to group the group membership of the files or directories specified by filelist, a standard UNIX
pathname or file filter, on the specified host (an NFT host-specifying prefix (page 12) that defaults to the
STORAGE (not current client) machine.

CHGRP can change the group for link targets, but not for the link itself. If you change the group for a
directory, however, CHGRP does not recursively change groups for all the contained files (although you
can change them all at once from within the directory by using the * filter if you wish or by invoking the
-R option).

DEFAULTS:
When you store a file with NFT, its default group is the same as that of the storage directory that receives
it (not necessarily the group it belonged to on the donor machine). So changing a storage directory's group
will change the default group of all files subsequently stored within it (but already stored files will retain
their original group, even if they are overwritten later). If you try to assign a file to a nonexistent group or
one to which you do not belong, NFT returns an error message (exact text varies depending on your target
machine). You can discover the groups you belong to on the local (client) machine by taking advantage
of NFT's ! escape syntax and typing

!groups youruserid

but you may not belong to the same groups on the STORAGE machine, and NFT does not support any
equivalent to GROUPS for use on STORAGE. See the "Sharing Stored Files" section of the EZSTORAGE
(URL: http://www.llnl.gov/LCdocs/ezstorage) guide for how to use DCECP to indirectly discover your
storage groups. Contact the LC user hotline (at lc-hotline@llnl.gov or lc-hotline@pop.scf.cln) to obtain
the forms needed to create new groups on STORAGE.

CHMOD (page 47) is a similar NFT command that changes file permissions. You can use DIR (page
57) to reveal the current group to which each stored file or directory belongs.

CHGRP confirms changes made with a summary message that gives the count of files or directories
whose group it has changed.

OPTIONS:
CHGRP takes a single option:

-R recursively changes the group membership of every child of the directory that you
specify. NFT ignores soft links to subdirectories.

EXAMPLE:
If group BIG exists on the STORAGE machine and if you belong to it, you can assign stored file TEST2
to it with the line below; if these conditions are not met (e.g., group XXX) you get the error message shown
(you get a "group name invalid" message on machines other than STORAGE).

NFT Reference Manual - 45

http://www.llnl.gov/LCdocs/ezstorage

R/Us: nft>chgrp big test2
Rtne: 1.0 1 entry changed ~/nfttest/test2
R/Us: nft>chgrp xxx test2
Rtne: 2.0 error. storage.llnl.gov: 451 could not
 get user id from registry. ~/nfttest/test2

(You can also change storage groups, even recursively, by using a dedicated tool called CHGRPSTG,
which is explained and illustrated in EZSTORAGE (URL: http://www.llnl.gov/LCdocs/ezstorage).)

NFT Reference Manual - 46

http://www.llnl.gov/LCdocs/ezstorage

CHMOD (Change Permissions)
SYNTAX:

chmod [-R] rights [host]filelist

ROLE:
changes to rights the access rights or "mode" of the files or directories specified by filelist, a standard
UNIX pathname or file filter, on the specified host (an NFT host-specifying prefix (page 12) that defaults
to the STORAGE (not current client) machine.

DEFAULTS:
When you transfer a file with NFT, its default rights (mode) on the sink machine seldom agree with its
original rights on the source machine. For example, NFT changes rights for files going to STORAGE using
umask (octal subtraction) 027 on OCF but 077 on SCF. Hence, you usually need to invoke CHMOD to
explicitly restore the original permissions after transfer if you want them to persist.

WARNING:
While the UNIX CHMOD utility lets you specify rights both symbolically (with a syntax such as g+w)
and octally (by ORing, or adding, the octal numbers of the rights to assign), the NFT CHMOD command
accepts the octal format only. Attempts to assign rights sybolically yield an error message. Consult EZFILES
(URL: http://www.llnl.gov/LCdocs/ezfiles) for a summary of the octal numbers associated with each
combination of access rights that CHMOD accepts.

CHGRP (page 45) is a similar NFT command that changes file groups. You can use DIR (page 57) to
reveal the current rights that each stored file or directory has.

CHMOD confirms changes made with a summary message that gives the count of files or directories
whose rights have changed.

OPTIONS:
CHMOD takes a single option:

-R recursively changes the rights (mode) of every child of the directory that you specify.
NFT ignores soft links to subdirectories.

EXAMPLE:
You can use octal mode 765 to assign a chosen set of rights to stored file TEST2, then confirm the
assignment by using DIR.

R/Us: nft>chmod 765 test2
Rtne: 1.0 1 entry changed ~/nfttest/test2
R/Us: nft>dir test2
Rtne: -rwxrw-r-x 1 jfk jfk 6229 Aug16 14:23 test2

(You can also change storage rights, even recursively and symbolically, by using a dedicated tool called
CHMODSTG, which is explained and illustrated in EZSTORAGE (URL:
http://www.llnl.gov/LCdocs/ezstorage).)

NFT Reference Manual - 47

http://www.llnl.gov/LCdocs/ezfiles
http://www.llnl.gov/LCdocs/ezstorage

CHOWN (Change Owners)
SYNTAX:

chown [-R] owner [host]filelist

ROLE:
(Storage only) changes to owner the official owner of the files or directories specified by filelist, a standard
UNIX pathname or file filter. NFT reports "command not available on specified host" if you try to use
CHOWN on files located anywhere except STORAGE. You need to use the host specifier storage: if and
only if your current remote host is not STORAGE.

DEFAULTS:
When you store a file with NFT, its default owner is the same as that of the storage directory that receives
it (not necessarily the owner it had on the donor machine). So changing a storage directory's owner will
change the default owner of all files subsequently stored within it (but already stored files will retain their
original owner, even if they are overwritten later). And storing a file owned by another user into your
storage directory will change its ownership to you.

CHMOD (page 47) is a similar NFT command that changes file permissions, while CHGRP (page 45)
changes file groups. You can use DIR (page 57) to reveal the current owner for each stored file or directory.

CHOWN confirms changes made with a summary message that gives the count of files or directories
whose group it has changed.

OPTIONS:
CHOWN takes a single option:

-R recursively changes the owner of every child of the directory that you specify. NFT
ignores soft links to subdirectories.

EXAMPLE:
Currently only privileged users (system administrators) can change the ownership of stored files with
CHOWN.

NFT Reference Manual - 48

CLOBBER (Enable File Overwriting)
SYNTAX:

clobber

ROLE:
Causes NFT to handle file-name conflicts by allowing an incoming file to overwrite any file of the same
name in the receiving (usually the current working) directory on the target host. By default, NFT prevents
such file overwriting and instead returns a warning when file-name conflicts occur (NOCLOBBER). So
CLOBBER overrides NFT's default NOCLOBBER behavior.

CLOBBER and NOCLOBBER are mutually exclusive alternative settings for an NFT environment
variable that preserves your choice of behavior until you overtly change it (or terminate your NFT client).
Only by using separate NFT clients (not multiple sessions with one client) can you have two sets of
environment variable settings for two sets of NFT jobs at once. See the "sessions (page 32)" section for
details.

STATUS (page 86) reports your current choice of CLOBBER or NOCLOBBER settings. CLOBBER
takes no options and returns no confirmation message.

EXAMPLE:
Trying to store (an updated version of) an already stored file with NFT is a typical situation where the
default NOCLOBBER behavior needs to be changed with CLOBBER to allow the desired overwriting to
occur, as shown here:

R/Us: nft> put test2
Rtne: 12.0. error. cannot clobber existing sink ~/nfttest/test2
R/Us: nft> clobber
R/Us: nft> put test2
Rtne: 13.0. 95 bytes sent in 1.0 seconds (0.1Kbytes/s) test2

NFT Reference Manual - 49

CLOG (Close Log File)
SYNTAX:

clog

ROLE:
Closes the NFT log file most recently opened with the LOG pathname command. QUITing your NFT
client also closes its open log file, if any, but changing sessions does not. As the LOG section (page 66)
explains, you can create more than one log file, but only one can be in use (open) at any time.

CLOG takes no options or arguments.

EXAMPLE:
NFT uses prefixes to reveal the source of every log-file line. For an explanation of these prefixes and a
typical sample NFT log file, see the section on NFT Logging Techniques (keyword: log-examples (page
21)). Also, using input files changes the way NFT logs its interactions (keyword: file-interactions (page
24)), but using sessions does not (keyword: session-usage (page 32)).

CLOSE (Restore Remote Host)
SYNTAX:

close

ROLE:
After any OPEN (page 73), restores NFT's remote host to its default value (namely, STORAGE). As with
OPEN, NFT sends no confirmation or reminder of which host is currently open after a CLOSE, and you
must use STATUS to disclose the current remote host. OPEN (page 73) and CLOSE exist to supplement
NFT's native host-specifying colon syntax (page 12) and to somewhat mimic the behaviour of FTP. But
unlike FTP, NFT lets you use several OPENs sequentially without requiring a corresponding paired CLOSE
after each one. CLOSE used with no preceding OPEN changes nothing and issues no error message.

EXAMPLE:
See the OPEN (page 73) section for an example of restoring NFT's remote host to STORAGE by using
CLOSE following several OPEN commands.

NFT Reference Manual - 50

CLR (Clear Completed Job Reports)
SYNTAX:

clr [[n[-m]] | [-opt]]

ROLE:
Clears (deletes the job-status record on) your most recent NFT request ("job") by default, or clears your
specific job with unique job number n (an integer), or the range of jobs with numbers n-m inclusive (using
a hyphen, not a comma, as separator), or all members of the job class specified by any one job-class option
opt listed below.

You can only clear job-status information for completed NFT jobs (those that either ran successfully
to completion, ended with an error, or were aborted by you). Attempting to clear incomplete jobs or jobs
whose records were already cleared has no effect, and will often return an error message such as "no
completed jobs in range." You can use ABT to abort an incomplete job before clearing its record, and you
can use RPT to discover the job numbers of your completed NFT jobs.

By default, jobs are remembered by the NFT server for up to 4 days after they complete. This can be
a convenience for reviewing your work, but frequent NFT users may find long accumulated RPT status
reports confusing and may want to prune no-longer-interesting job records from them by astute use of
CLR.

RPT (page 81) (report) and ABT (page 51) (abort) are NFT commands closely related to CLR. The
NFT STATUS (page 86) command reports on your environment-variable settings, not on your file-transfer
jobs.

OPTIONS:
CLR accepts several job-class options opt to specify which set of your NFT job records you want cleared.
But CLR expects you to use these options ONE at a time: combined options do not yield combined job
classes to be cleared. Possible stand-alone job-classes on which you can apply CLR include:

-a all jobs that NFT remembers, regardless of state. [If you use multiple NFT sessions
(page 32), a rare practice, then -a selects only jobs in the current session, NOT in all
the sessions that you have created, and the other job-class options behave likewise.]

-c complete jobs, that have successfully or unsuccessfully completed running.

-o okay jobs, those that have succesfully completed running.

-e error jobs, that have unsuccessfully completed running.

-k aborted jobs, those that were terminated by the user with ABT.

NFT Reference Manual - 51

EXAMPLE:
CLR returns no confirmation of success when you delete one or more job-status records, just the usual
prompt for next input:

User: clr 4
Rtne: nft>

NFT Reference Manual - 52

CP (Copy/Transfer Files)
SYNTAX:

cp [-dR] [host]sourcepath [host][sinkpath]

cp [-dR] [host]{fl1,fl2,...} [host][{flx,fly,...}]

ROLE:
Transfers (copies) the file specified by sourcepath from the first host into the file specified by sinkpath on
the second host. Alternatively, CP transfers (copies) each file in the ordered list {fl1,fl2...} on the first host
into the corresponding file in the second ordered list {flx,fly...} on the second host (each file list must have
the same number of members). Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)).

sourcepath and sinkpath are standard UNIX pathnames that default to the current working directory
on each host (specified by LCD (page 64) or CD (page 43)). You can use standard
UNIX file filters in sourcepath (to copy many files with one command) if sinkpath
is a directory. File filters are never allowed in sinkpath itself.

fl1,fl2,... and flx,fly,... must be surrounded by the braces {} shown above. If both lists are present
they must have an equal number of members and no file filters. If you omit the second
list you can include file filters among the entries in the first.

DEFAULTS:
CP always transfers files using FTP binary mode (you must run FTP itself, not NFT, for ASCII-mode file
transfers). By default, NFT does NOT overwrite existing files with incoming files of the same name
(NOCLOBBER), but you can enable overwrites with the CLOBBER (page 49) command. CP commands
that include file filters, to transfer many files at once, are always processed asynchronously (subordinate
jobs run in parallel, in any order) regardless of your current SYNC/ASYNC (page 41) setting, so never
use filters with CP if arrival order is crucial.

Because NFT uses overt host prefixes to specify the source and sink machines for a file copy (not login,
as with FTP), you can use CP to transfer files between two machines even when you are running the NFT
client on a third machine (third-party transfers, see example below).

NFT's GET (page 60) and PUT (page 75) commands behave like CP but by default only work with
the LC STORAGE system, not between any two hosts. (You can "generalize" them if you use OPEN (page
73) first.) Hence, CP is really NFT's clearest equivalent of the well-known FTP general GET and PUT
commands.

NFT Reference Manual - 53

OPTIONS:
CP accepts two options:

-d destroys each source file after the transfer (copy) is successful.

-R recursively copies source subdirectories (however, soft links to subdirectories are not
followed).

EXAMPLE:
(1) Transfer (copy) file t1 from the local machine (:) into file /usr/tmp/t2 on GPS02.

nft>cp :t1 gps02:/usr/tmp/t2
 1.0. 95 bytes received in 0.1 seconds
 (0.7 Kbytes/s) from /g/g0/jfk/t1 to /usr/tmp/t2
 1.0 1 entry copied /g/g0/jfk/t1

(2) Transfer (copy) file /usr/tmp/t3 from GPS02 into file /usr/tmp/t6 on GPS01, even if running NFT on a
third machine.

nft>cp gps02:/usr/tmp/t3 gps01:/usr/tmp/t6
 3.0. 98 bytes received in 0.4 seconds
 (0.2 Kbytes/s) from /usr/tmp/t3 to /usr/tmp/t6
 3.0 1 entry copied /g/g0/jfk/t3

(3) Use the file filter * to transfer (copy) all files whose names begin with LOG from GPS02 to GPS01.
Note that these files did not copy in numerical order because NFT processes such multiple-file jobs
asynchronously (in parallel), even if SYNC mode is enabled, and that the final transaction summary (here
11.0) has the lowest job number of the jobs reported.

nft>cp gps02:/usr/tmp/log* gps01:/usr/tmp
 12.0. 914 bytes received in 0.1 seconds (7.4 Kbytes/s)
 from /usr/tmp/log1 to /usr/tmp/log1
 14.0. 288 bytes received in 0.3 seconds (0.9 Kbytes/s)
 from /usr/tmp/log3 to /usr/tmp/log3
 13.0. 178 bytes received in 0.1 seconds (1.9 Kbytes/s)
 from /usr/tmp/log2 to /usr/tmp/log2
 11.0. 3 entries copied (aggregate 3.4 Kbytes/s) /usr/tmp/log*

NFT Reference Manual - 54

DELETE (Remove Files)
SYNTAX:

del[ete] [-R] [host]pathname

del[ete] [-R] [host]{file1,file2,...}

ROLE:
Deletes the file specified by pathname from the specified host. Alternatively, DELETE removes each file
in the ordered list {file1,file2...} from the specified host. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede DELETE
with an OPEN (page 73) command, then host defaults to the machine that OPEN
specified.

pathname is a standard UNIX pathname, often a file in the current working directory (specified
by CD (page 43)). To delete many files with one command, use a standard UNIX file
filter at the end of pathname. At LC, HPSS interprets DELETE * to remove all files
from only your current working directory, not from any of its child directories (this
is an important difference from FTP's MDELETE *, which behaves recursively in
STORAGE).

file1,file2,... must be surrounded by the braces {} shown above. File filters are allowed in any list
member.

Remember that by default deletions occur among your stored files, not your local files (on the client
machine), which you must overtly specify with the colon (:) prefix. To delete (empty) directories, use
RMDIR (page 80) instead of DELETE. NFT's DIR (page 57) command lists your files. DELETE reports
each single file it removes, but not multiples (from filter use). NFT has no separate MDELETE command
(but see -R below).

OPTIONS:
DELETE accepts one option:

-R recursively deletes all subdirectories and their contents. NFT ignores soft links to
subdirectories. (NFT's DELETE and RMDIR commands are equivalent when you
invoke the -R option.)

EXAMPLE:
To DELETE local file test8 you must use NFT's colon (:) prefix, or else NFT will try to delete a file of
that name from your current STORAGE working directory instead:

NFT Reference Manual - 55

nft>delete test8
 8.0. error. storage: 562
 No such file or directory ~/test8
nft>delete :test8
 9.0 1 entry deleted /g/g0/jfk/test8

NFT Reference Manual - 56

DIR (List Directory Contents, Long)
SYNTAX:

dir [-opts] [host][pathname]

ROLE:
Lists the contents of a directory in a long (detailed) format, with entries alphabetical by file (or subdirectory)
name in the ASCII collating sequence that puts symbols first, then uppercase letters, then lowercase letters.
Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede DIR with
an OPEN (page 73) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX path that defaults to the current working directory.

opts control the format of DIR's display, but only those options supported by the FTP
daemon on the target host actually work, while others will fail, usually with an error
message of the form

nnn.0 error: Syntax error: Invalid command options specified

Different FTP daemons support different sets of display opts and those not supported
by LC's STORAGE machine(s) are noted in the option list below.

LS (page 67) is a similar NFT command with different default output.

OPTIONS:

-a lists all files, including dot (.), dot-dot (..), and the others begining with a period.

-b displays nonprintable characters in the octal \ddd notation.

-c (NOT supported by STORAGE) sorts the listing by time of last change.

-d lists the directory entry itself (i.e., the single entry for .), not the contents of the
directory.

-e (NOT supported by STORAGE) lists the security level (a digit).

-f (NOT supported by STORAGE) forces each argument to be treated as a directory.

-g (NOT supported by STORAGE) includes group ownership in the listing.

-h lists each file's Class of Service (COS) identifier (instead of its owner). See the
SETCOS section of the HPSS Manual (URL: http://www.llnl.gov/LCdocs/hpss) for
Class of Service details.

-i (NOT supported by STORAGE) prints the i-node number before each list entry.

NFT Reference Manual - 57

http://www.llnl.gov/LCdocs/hpss

-l lists permissions, owner, group, and date with each list entry.

-n lists the owner's UID and group's GID numbers, rather than the associated character
strings.

-o (NOT supported by STORAGE) includes file ownership in the listing.

-p (NOT supported by STORAGE) displays each directory name with an appended slash.

-q (NOT supported by STORAGE) prints nondisplayable characters in file names as a
question mark (?).

-r (NOT supported by STORAGE) reverses the (default alphabetical) order of the listing.

-s (NOT supported by STORAGE) reports the file size in sectors (instead of the default
of blocks).

-t (NOT supported by STORAGE) sorts the listing by time last modified (most recent
first).

-u (NOT supported by STORAGE) sorts the listing by time last accessed (most recent
first).

-A (NOT supported by STORAGE) same as option -a except that dot (.) and dod-dot (..)
are not listed.

-F appends to each directory name a slash (/), to each executable file an asterisk (*), and
to each soft link an at-sign (@).

-L (NOT supported by STORAGE) lists the target of each symbolic link rather than the
link itself.

-P (NOT supported by STORAGE) lists the account identifier with each entry.

-R provides a recursive listing of the contents of all subdirectories too (may run very
slowly). NFT ignores soft links to subdirectories.

EXAMPLE:
A typical default (no -opts used) response to NFT's DIR command has this form (the meaning of each field
is indicated below it), with a similar line for each file reported:

-rwxr-xr-x 2 jfk doc 2048 Sep30 16:04 test1
[permission links owner group size date name]

NFT Reference Manual - 58

ENDGR (End Asynchronous Group)
SYNTAX:

endgr

ROLE:
Ends the scope of an asnychronous group of NFT commands (jobs). See the GROUP (page 62) command
for usage and examples.

ENDGR has no options and returns no confirmation.

NFT Reference Manual - 59

GET (Retrieve Stored Files)
SYNTAX:

get [-dR] sourcepath [sinkpath]

get [-dR] {file1,file2,...} [{filex,filey,...}]

ROLE:
(Storage defaulted) transfers (copies) the file specified by sourcepath from the LC STORAGE system into
the file specified by sinkpath on the local machine (where you are running your NFT client). Alternatively,
GET transfers (copies) each file in the ordered list {file1,file2...} on the STORAGE system into the
corresponding file in the second ordered list {filex,filey...} on the local machine (each file list must have
the same number of members). If you precede GET with an OPEN (page 73) command, you can also
retrieve files from a specified host other than STORAGE. Here

sourcepath and sinkpath are standard UNIX pathnames. You can use standard UNIX file filters
in sourcepath (to transfer many files with one command) if sinkpath is a directory.
File filters are never allowed in sinkpath itself. If sourcepath is just a simple file name,
omitting sinkpath causes NFT to put the retrieved file into the current local working
directory (which you can specify with LCD (page 64)). If sourcepath is a longer
pathname, then omitting sinkpath causes NFT to try to duplicate sourcepath on the
local machine, but if the appropriate subdirectories do not already exist the transfer
fails with an error.

file1,file2,... and filex,filey,... must be surrounded by the braces {} shown above. If both lists are
present they must have an equal number of members and no file filters. If you omit
the second list you can include file filters among the entries in the first.

DEFAULTS:
Unlike NFT's CP (copy) command and FTP's general GET command, NFT's GET transfers files by default
only from LC's STORAGE system and only to the local (client) machine. Hence, no host-specifying prefixes
are allowed when you use GET, and third-party GETs between remote machines are not supported. You
can, however, use OPEN (page 73) to reset NFT's remote host and then GET files from a nonSTORAGE
source machine.

GET always transfers files using FTP binary mode (you must run FTP itself, not NFT, for ASCII-mode
file transfers). By default, NFT does NOT overwrite existing files with incoming files of the same name
(NOCLOBBER), but you can enable overwrites with the CLOBBER (page 49) command. GET commands
that include file filters, to transfer many files at once, are always processed asynchronously (subordinate
jobs run in parallel, in any order) regardless of your current SYNC/ASYNC (page 41) setting, so never
use filters with GET if arrival order is crucial.

Use CP (page 53) (copy) for all general file transfers with NFT, and use PUT (page 75) (transfer to
STORAGE) to move files in the opposite direction from GET.

OPTIONS:

-d destroys the source file (on STORAGE) after transfer to the local machine is successful.

NFT Reference Manual - 60

-R recursively copies all children in subdirectories of sourcepath, if it is a directory. NFT
ignores soft links to subdirectories.

EXAMPLE:
By default NFT prevents overwriting an existing file (here t4) whenever you use GET to retrieve (here t6)
from STORAGE. You can retrieve to a nonconflicting file name (as shown here) or use NFT's CLOBBER
command to enable overwriting.

nft>get t6 t4
 5.0. error. Cannot clobber existing
 sink /g/g0/jfk/t4

nft>get t6
 6.0. 95 bytes received in 1.8 seconds
 (0.1 Kbytes/s) from ~/t6 to /g/g0/jfk/t6
 1 entry copied ~/t6

NOTE:
If you want to GET a few files from inside a stored TAR-format archive file without first GETting the
whole (large) archive to your local machine, use HTAR instead of NFT. Using HTAR's -F option, you can
even extract files from within a remote TAR-format archive file on any LC machine that has a
preauthenticated FTP server. Consult the HTAR Reference Manual (URL: http://www.llnl.gov/LCdocs/htar)
for instructions and examples.

NFT Reference Manual - 61

http://www.llnl.gov/LCdocs/htar

GROUP (Begin Asynchronous Group)
SYNTAX:

group

ROLE:
Begins the scope of an asynchronous group of NFT commands (that will be closed by an ENDGR command).

All commands between a GROUP/ENDGR pair are executed asynchronously, in parallel, as resources
become available, even though the default for NFT command execution is synchronous (serial). The whole
group is scheduled serially, as usual, so that all previously entered synchronous commands will execute
before any commands within the group execute.

Users interested in running NFT asynchronously should consult the SYNC (page 87) command section
as well as the command-sequencing (page 17) discussion for a comparative analysis of the three ways that
NFT supports parallel jobs.

OPTIONS:
GROUP has no options, but you must use ENDGR to close a command group started with GROUP.

EXAMPLE:
While remaining in SYNC mode, you can specify a subset of commands to process in parallel
(asynchronously among themselves) by preceding them with GROUP and following them with ENDGR.
To force all subsequent commands to wait until everything within such a GROUP has excuted, use BLOCK
after ENDGR and before the next command. For example, the NFT command sequence

 mkdir test3
 cd test3
 group
 cp gps02:file1 :file1
 cp gps01:file2 :file2
 cp gps15:file3 :file3
 endgr
 block
 rpt -a

first creates directory TEST3, then ASYNCHRONOUSLY copies three files into that directory (since
arrival order is often unimportant), then, and only after all three have arrrived (BLOCK), issues a report
(RPT).

NFT Reference Manual - 62

HELP (Describe NFT Commands)
SYNTAX:

help [command]

ROLE:
Lists the available NFT command names, in broad functional groups, or, if you supply a specific command's
name, describes that command. Here

command identifies the NFT option on which you want specific help. NFT returns a
MAN-page-like syntax summary briefly covering uses and suboptions, followed by
a few examples. Help messages for commands with many suboptions, such as DIR,
are abbreviated.

HELP takes no options and requests for help about nonexistent NFT commands return a syntax error.

NFT Reference Manual - 63

LCD (Change Local Working Directory)
SYNTAX:

lcd [pathname]

ROLE:
Changes the current working directory on the local machine (where you are running your NFT client) to
the specified pathname, which is a standard UNIX path that defaults to your home directory.

Use CD (page 43) to change working directories generally, PWD: (page 77) to discover the name of
your current local working directory, and CDUP (page 44) to move up one directory level. These commands
are somewhat redundant, so that

 CD :..
 CDUP :
 LCD ..

are exactly equivalent, and all require using NFT's own prefix syntax (page 12) for hosts.

LCD takes no options, and it confirms each requested directory change.

WARNING:
If you specify a nonexistent pathname for the UNIX CD command, you get an immediate error message
and no directory change. If you specify a nonexistent pathname for NFT's LCD command, however, you
get the usual confirmation message before receiving the string "no such file or directory." And subsequent
use of PWD will also report the nonexistent directory, without complaint. Of course attempts to then use
DIR or actual file-transfer commands will fail. You must overtly reset the local working directory with
another use of LCD to a real location to overcome this error and continue transferring files.

EXAMPLE:
In response to each LCD command, NFT reports both the machine involved and the new working directory
(wd).

R/Us: nft> lcd /usr/tmp/stuff
Rtne: local wd is /usr/tmp/stuff [on client machine]

NFT Reference Manual - 64

LN (Create a Link)
SYNTAX:

ln -s sourcepath linkname

ROLE:
(Storage only) creates a new directory entry called linkname that points to the file or directory specified
in sourcepath on the STORAGE system. Here

-s specifies a soft link (hard links on the STORAGE system are not allowed, and using
LN without this option returns an error message that says so).

sourcepath is a standard UNIX path that leads to the original file or directory, to which you want
to link.

linkname is a UNIX path that leads to where the link (pointer) will be placed. If linkname ends
in a directory, then the children of sourcepath will be duplicated there as links back
to their counterparts. If linkname ends in a file, then the new link will be given the
file name at the end of that path.

NFT's LN command works only on the STORAGE system, not on any other hosts. (Technically, using
OPEN (page 73) should allow you to use LN on the nonSTORAGE host you have OPENed. In practice,
however, the only LC FTP daemon that supports remote links is the one on STORAGE, both open and
secure.) But you can use the escape syntax !LN to issue a link command that executes on the local (client)
machine (though not on other remote machines).

EXAMPLE:
To create a link (pointer) in your storage directory NFTTEST called T4 that points back to actual file T1
in your home storage directory, use the LN command shown here.

nft>ln -s ~/t1 ~/nfttest/t4
 3.0. 1 entry linked ~/t1

NFT Reference Manual - 65

LOG (Open Log File)
SYNTAX:

log pathname

ROLE:
Begins recording in a log file all your input to and output messages from NFT as it runs. Here

pathname is usually just the name of a file (e.g. nftlog) that you want NFT to create in the current
working directory (where NFT was started) on the machine where you are running
the NFT client. If you supply an absolute pathname (such as ~/projects/nftlog or
/usr/tmp/testdir5/log5) then NFT creates the log file in the other directory that you
specify.

Logging of all NFT input and output continues until you issue the CLOG (page 50) (close log) command
or until you QUIT your current NFT session, whichever comes first.

Issuing a second LOG command with a different pathname will (1) create a second, independent log
file, (2) stop recording messages in the first log file, and (3) start recording (subsequent) messages in the
second log file. Issuing a second LOG command with the same pathname will insert an updated time stamp
(comment) in the open log file and then simply append all new messages to the old ones. If a file named
pathname already exists when you first issue a LOG command, NFT opens it, appends a current time
stamp, and places all your new messages at the end of that file. Thus you can jump between multiple log
files during an NFT session, channeling messages to one and then another, just by using LOG with each
file's name whenever you want to change files.

NFT does not collect a large buffer of messages before logging them; instead, messages are flushed to
the log file after every carriage return. Logging starts immediately, and the first line recorded in your log
file (after a comment-line date stamp) will be the LOG pathname command that requested the file. CLOG
will be the last line recorded. As long as you do not change the (default) TERM mode setting with a
NOTERM (page 72) command, all your input and output will continue to display at your terminal while
logging occurs.

DEFAULTS:
LOG takes no options and there is no default log-file name.

EXAMPLE:
NFT uses prefixes to reveal the source of every log-file line. For an explanation of these prefixes and a
typical sample NFT log file, see the section on NFT Logging Techniques (keyword: log-examples (page
21)). Also, using input files changes the way NFT logs its interactions (keyword: file-interactions (page
24)), but using sessions does not (keyword: session-usage (page 32)).

NFT Reference Manual - 66

LS (List Directory Contents, Short)
SYNTAX:

ls [-opts] [host][pathname]

ROLE:
Lists the contents of a directory in a short format (names only by default, unless you add detail with options),
with entries alphabetical by file (or subdirectory) name in the ASCII collating sequence that puts symbols
first, then uppercase letters, then lowercase letters. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede LS with an
OPEN (page 73) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX path that defaults to the current working directory.

opts control the format of LS's display, but only those options supported by the FTP daemon
on the target host actually work, while others will fail, usually with an error message
of the form

nnn.0. error: Syntax error: Invalid command options specified

Different FTP daemons support different sets of display opts and those not supported
by LC's STORAGE machine(s) are noted in the option list below.

DIR (page 57) is a similar NFT command with different default output.

OPTIONS:

-a lists all files, including dot (.), dot-dot (..), and the others begining with a period.

-b displays nonprintable characters in the octal \ddd notation.

-c (NOT supported by STORAGE) sorts the listing by time of last change.

-d lists the directory entry itself (i.e., the single entry for .), not the contents of the
directory.

-e (NOT supported by STORAGE) lists the security level (a digit).

-f (NOT supported by STORAGE) forces each argument to be treated as a directory.

-g (NOT supported by STORAGE) includes group ownership in the listing.

-h lists each file's Class of Service (COS) identifier (instead of its owner). See the
SETCOS section of the HPSS Manual (URL: http://www.llnl.gov/LCdocs/hpss) for
Class of Service details.

-i (NOT supported by STORAGE) prints the i-node number before each list entry.

NFT Reference Manual - 67

http://www.llnl.gov/LCdocs/hpss

-l lists permissions, owner, group, and date with each list entry.

-m (NOT supported by STORAGE) lists file names horizontally, each separated by one
comma and one blank space from the next.

-n lists the owner's UID and group's GID numbers, rather than the associated character
strings.

-o (NOT supported by STORAGE) includes file ownership in the listing.

-p (NOT supported by STORAGE) displays each directory name with an appended slash.

-q (NOT supported by STORAGE) prints nondisplayable characters in file names as a
question mark (?).

-r (NOT supported by STORAGE) reverses the (default alphabetical) order of the listing.

-s (NOT supported by STORAGE) reports the file size in sectors (instead of the default
of blocks).

-t (NOT supported by STORAGE) sorts the listing by time last modified (most recent
first).

-u (NOT supported by STORAGE) sorts the listing by time last accessed (most recent
first).

-x (NOT supported by STORAGE) lists file names horizontally in columns.

-A (NOT supported by STORAGE) same as option -a except that dot (.) and dod-dot (..)
are not listed.

-C (NOT supported by STORAGE) formats the listing in multiple columns.

-F appends to each directory name a slash (/), to each executable file an asterisk (*), and
to each soft link an at-sign (@).

-L (NOT supported by STORAGE) lists the target of each symbolic link rather than the
link itself.

-P (NOT supported by STORAGE) lists the account identifier with each entry.

-R provides a recursive listing of the contents of all subdirectories too (may run very
slowly). If you use -R together with any multicolumn option (-m, -x, -C), the
multicolumn option is ignored. NFT ignores soft links to subdirectories.

EXAMPLE:

NFT Reference Manual - 68

A typical default (no -opts used) response to NFT's LS command is a one-column list of file and directory
names. See the DIR (page 57) section above for an annotated explanation of the more elaborate output that
using LS with options can yield.

NFT Reference Manual - 69

MKDIR (Make Directories)
SYNTAX:

mkdir [host]pathname

ROLE:
Creates the specified directory on the specified host. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede MKDIR
with an OPEN (page 73) command, then host defaults to the machine that OPEN
specified.

pathname specifies where to put the new directory. If this is a simple directory name, then NFT
makes the directory in the current working directory (specified by CD (page 43)). If
this is a relative or absolute pathname all of whose other directories already exist,
then NFT makes the new directory as a child of the last directory in the path.

MKDIR takes no options and (at default reporting levels) does not confirm the creation of the directory
you requested. However, NFT's DIR (page 57) command lists your files and directories for confirmation.

NFT Reference Manual - 70

NOCLOBBER (Disable File Overwriting)
SYNTAX:

noclobber

ROLE:
Causes NFT to handle file-name conflicts by preventing an incoming file from overwriting any file of the
same name in the receiving (current working) directory on the target host. Instead NFT returns a warning
when file-name conflicts occur. NOCLOBBER is NFT's default behavior, so you would normally need to
use the overt NOCLOBBER command only to reverse your previous use of the CLOBBER command,
which enables file overwriting.

CLOBBER and NOCLOBBER are mutually exclusive alternative settings for an NFT environment
variable that preserves your choice of behavior until you overtly change it (or terminate your NFT client).
Only by using separate NFT clients (not multiple sessions with one client) can you have two sets of
environment variable settings for two sets of NFT jobs at once. See the "sessions (page 32)" section for
details.

STATUS (page 86) reports your current choice of CLOBBER or NOLOBBER settings. NOCLOBBER
takes no options and returns no confirmation message.

EXAMPLE:
NOCLOBBER (no overwriting) is NFT's default behavior; consult the CLOBBER (page 49) section for
an example of how to reverse this behavior.

NFT Reference Manual - 71

NOTERM (Disable Terminal Output)
SYNTAX:

noterm

ROLE:
Causes NFT to prevent terminal display of all output from its executed commands, and to stop offering its
interactive nft> prompt as well. So NOTERM overrides NFT's default TERM behavior. If you have enabled
an NFT log file with the LOG (page 66) command, however, all normal output and prompts continue to
collect in that file even after you use NOTERM.

TERM and NOTERM are mutually exclusive alternative settings for an NFT environment variable
that preserves your choice of behavior until you overtly change it (or terminate your NFT client). Only by
using separate NFT clients (not multiple sessions with one client) can you have two sets of environment
variable settings for two sets of NFT jobs at once. See the "sessions (page 32)" section for details.

STATUS (page 86) normally reports your NFT environment variable settings, but of course NOTERM
hides all STATUS output as well as other output. NOTERM takes no options and returns no confirmation
message, but the absence of NFT prompts betrays its use.

NFT Reference Manual - 72

OPEN (Change Remote Host)
SYNTAX:

open host

ROLE:
Changes from STORAGE (the default) to host (which you must specify) the remote host with which NFT
interacts and on which it reports. Actually, OPEN itself is a local command that only changes the remote
host reported by the STATUS command in its "connected to host as yyy" output. Only after you attempt
a specific interaction with that host (such as CD or PUT) does the hidden NFT server try to connect to it
(persistently). For OPEN, host must be a domain name (e.g., GPS01 or GPS01.LLNL.GOV), not a numerical
IP address.

When using OPEN remember that:
(1) NFT sends no clarification or reminder of which host is currently open, and no altered prompt reveals
the current target (unlike FTP). You must use STATUS to disclose the current remote host.
(2) ONLY machines offering NFT clients (see Availability (page ?)) can really be OPENed for NFT file
transfers. You can request OPENs of other hosts (such as FIS) without receiving any immediate error
message, and even with a successful reset of the STATUS report (see example below). But attempts to
actually change directories, move files, etc., will fail, yielding "invalid source" or "invalid sink" messages.

OPEN exists to supplement NFT's native host-specifying colon syntax (page 12) and to somewhat
mimic the behavior of FTP. Open lets you use PUT and GET (but not the other "storage-defaulted"
commands) with remote hosts other than the LC storage system (because OPEN resets NFT's default remote
host). Unlike FTP, however, NFT lets you use subsequent OPENs to repeatedly reset the current remote
host without requiring a paired CLOSE after each OPEN.

EXAMPLE:
Using OPEN lets you
(1) change NFT's remote host from STORAGE to GPS01,
(2) confirm the change with STATUS, and
(3) successfully transfer a file to GPS01 with PUT, which is reserved for storage-only use if you omit the
preceding OPEN. But note that you can also
(4) apparently change remote hosts to FIS, and
(5) apparently confirm that change with STATUS even though
(6) all actual file-transfer attempts fail with an error message (because FIS is not a host known to the NFT
server).
(7) CLOSE restores NFT's remote host to STORAGE.

nft>open gps01 ---(1)
nft>status ---(2)
 connected to gps01 as jfk...
nft>put test3 /usr/tmp/test3a ---(3)
 1.0 95 bytes sent in 0.1 seconds
 (0.7 Kbytes/s) from /g/g0/jfk/test3
 to /usr/tmp/test3a
nft>open fis ---(4)

NFT Reference Manual - 73

nft>status ---(5)
 connected to fis as jfk...
nft>put test3 ---(6)
 2.0 error Invalid host
 specified. ~/test3
nft>close ---(7)
nft>status
 connected to storage as jfk...

NFT Reference Manual - 74

PUT (Store Local Files)
SYNTAX:

put [-dR] sourcepath [sinkpath]

put [-dR] {file1,file2,...} [{filex,filey,...}]

ROLE:
(Storage defaulted) transfers (copies) the file specified by sourcepath from the local machine (where you
are running your NFT client) into the file specified by sinkpath on the LC STORAGE system. Alternatively,
PUT transfers (copies) each file in the ordered list {file1,file2...} on the local machine into the corresponding
file in the second ordered list {filex,filey...} on the STORAGE system (each file list must have the same
number of members). If you precede PUT with an OPEN (page 73) command, you can also deliver files
to a specified host other than STORAGE. Here

sourcepath and sinkpath are standard UNIX pathnames. You can use standard UNIX file filters
in sourcepath (to transfer many files with one command) if sinkpath is a directory.
File filters are never allowed in sinkpath itself. If sourcepath is just a simple file name,
omitting sinkpath causes NFT to put the stored file into the current STORAGE working
directory (which you can specify with CD (page 43)). If sourcepath is a longer
pathname, then omitting sinkpath causes NFT to try to duplicate sourcepath on the
STORAGE system, but if the appropriate subdirectories do not already exist the
transfer fails with an error.

file1,file2,... and filex,filey,... must be surrounded by the braces {} shown above. If both lists are
present they must have an equal number of members and no file filters. If you omit
the second list you can include file filters among the entries in the first.

DEFAULTS:
Unlike NFT's CP (copy) command and FTP's general PUT command, NFT's PUT transfers files by default
only from the local (client) machine and only to the STORAGE system. Hence, no host-specifying prefixes
are allowed when you use PUT, and third-party PUTs between remote machines are not supported. You
can, however, use OPEN (page 73) to reset NFT's remote host and then PUT files to a nonSTORAGE
target machine.

PUT always transfers files using FTP binary mode (you must run FTP itself, not NFT, for ASCII-mode
file transfers). By default, NFT does NOT overwrite existing files with incoming files of the same name
(NOCLOBBER), but you can enable overwrites with the CLOBBER (page 49) command. PUT commands
that include file filters, to transfer many files at once, are always processed asynchronously (subordinate
jobs run in parallel, in any order) regardless of your current SYNC/ASYNC (page 41) setting, so never
use filters with PUT if arrival order is crucial.

Use CP (page 53) (copy) for all general file transfers with NFT, and use GET (page 60) (transfer from
STORAGE) to move files in the opposite direction from PUT.

NFT Reference Manual - 75

OPTIONS:

-d destroys the source file (on the local machine) after transfer to the STORAGE system
is successful.

-R recursively transfers (copies) files in subdirectories if sourcepath is a directory. NFT
ignores soft links to subdirectories.

EXAMPLE:
To store local file t1 into a file called t2 in the current STORAGE working directory, use this command:

nft>put t1 t2
 4.0. 95 bytes sent in 1.0 seconds
 (0.1 Kbytes.s) from /g/g0/jfk/t1 to ~/t2
 1 entry copied /g/g0/jfk/t1

NOTE:
If you want to PUT a large TAR-format archive file into storage but don't have the space (or time) to build
it first on your local machine, use HTAR instead of NFT (HTAR will actually build the archive directly
in storage as member files arrive). With HTAR's -F option, you can similarly transfer files directly into a
remote TAR-format archive file on any LC machine that has a preauthenticated FTP server. Consult the
HTAR Reference Manual (URL: http://www.llnl.gov/LCdocs/htar) for details and examples.

NFT Reference Manual - 76

http://www.llnl.gov/LCdocs/htar

PWD (Print Working Directory)
SYNTAX:

pwd [-a] | [host]

ROLE:
Prints (reports the name of) the current working directory on the specified host, where host is the NFT
host-specifying prefix that defaults to the STORAGE (not current client) machine, as explained above
(keyword: prefix (page 12)). If you precede PWD with an OPEN (page 73) command, then host defaults
to the machine that OPEN specified.

So by default PWD used with no arguments reports your current STORAGE directory. Use CD (page
43) to change directories generally, CDUP (page 44) to move one directory level up, and LCD (page 64)
to change local (client-machine) directories. These commands are somewhat redundant, so that

 CD :..
 CDUP :
 LCD ..

are exactly equivalent, and all require using NFT's own prefix syntax for hosts.

WARNING:
If you specify a nonexistent directory with CD or LCD, then subsequent use of PWD will report that
nonexistent directory with no complaint, even though attempts to use DIR or actual file-transfer commands
will fail. You must specify a real location with another CD or LCD command to overcome this error.

OPTIONS:

-a reports the current working directory on both the local (NFT-client) and the STORAGE
machines. This replaces a host specification.

EXAMPLE:
Remember that PWD reports on the STORAGE machine by default.

R/Us: nft> pwd
Rtne: remote wd is ~/nfttest [on STORAGE]
R/Us: nft> pwd :
Rtne: local wd is /g/g0/jfk/stuff [on client machine]
R/Us-a nft> pwd -a
Rtne: local wd is /g/g0/jfk/stuff
 remote wd is ~/nfttest

NFT Reference Manual - 77

QUIT (Terminate NFT Client)
SYNTAX:

quit

ROLE:
Terminates your current interactive NFT client and closes any open log file, but does NOT stop your
previously submitted file-transfer jobs from continuing to execute. Indeed, job persistence even after your
client ends is an NFT safety feature. To wait until all jobs complete before QUITing, use the combination
command BLOCK (page 42);QUIT.

To discover if any incomplete file-transfer jobs remain, even from previous NFT runs, use NFT's RPT
(page 81) command. To terminate specific file-transfer jobs (as opposed to terminating the client that
submits them), use NFT's ABT (page 39) (abort) command.

NFT Reference Manual - 78

RENAME (Change File Name)
SYNTAX:

ren[ame] [host]sourcepath [host]sinkpath

ren[ame] [host]{file1,file2,...} [host]{filex,filey,...}

ROLE:
Renames the file specified by sourcepath to the name specified by sinkpath. Alternatively, RENAME
changes the name of each file in the ordered list {file1,file2...} into the corresponding file name in the
second ordered list {filex,filey...} (each file list must have the same number of members). Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). For RENAME (unlike CP),
if you use a host prefix, it must be the SAME for both sourcepath and sinkpath. You
can thus rename files on any single remote machine, but you can NOT rename files
"across machines." Use CP (page 53) to move files between machines and
simultaneously change their names.

sourcepath and sinkpath are standard UNIX pathnames that default to the current working directory
(specified by CD (page 43)). Because of the obvious ambiguity that would result, you
cannot use file filters.

file1,file2,... and filex,filey,... must be surrounded by the braces {} shown above, and both lists
must have an equal number of members and no file filters.

Some FTP daemons do not support renaming directories. To actually transfer files between machines,
use NFT's CP (copy) (page 53), GET (from storage) (page 60), or PUT (to storage) (page 75) commands
instead of RENAME. To confirm name changes, use DIR (page 57). RENAME takes no options and reports
(only) the old name of each file it changes.

EXAMPLE:
To RENAME file test7 to test8 on the local (client) machine, use the syntax shown here:

nft>rename :test7 :test8
 11.0 1 entry renamed /usr/tmp/test7

NFT Reference Manual - 79

RMDIR (Remove Directories)
SYNTAX:

rmdir [-R] [host]pathname

rmdir [-R] [host]{dir1,dir2,...}

ROLE:
Removes the (empty) directory specified by pathname from the specified host. Alternatively, RMDIR
removes each (empty) directory in the ordered list {dir1,dir2...} from the specified host. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede RMDIR
with an OPEN (page 73) command, then host defaults to the machine that OPEN
specified.

pathname is a standard UNIX pathname that ends in a directory, often a child of the current
working directory (specified by CD (page 43)). To delete many directories with one
command, use a standard UNIX file filter at the end of pathname.

dir1,dir2,... must be surrounded by the braces {} shown above. File filters are allowed in any list
member.

Remember that by default removals occur among your storage directories, not your local directories
(on the client machine), which you must overtly specify with the colon (:) prefix. To delete files instead
of directories, use DELETE (page 55) instead of RMDIR. NFT's DIR (page 57) command lists your files
and directories.

OPTIONS:

-R (uppercase are) recursively deletes the files and subdirectories in a directory before
deleting the directory itself. Without -R, you must empty each directory before you
can remove it with RMDIR. (The DELETE and RMDIR commands are equivalent
when you invoke the -R option.) NFT ignores soft links to subdirectories.

NFT Reference Manual - 80

RPT (Report Job Status)
SYNTAX:

rpt [[n[-m]] | [-opt]]

ROLE:
Reports the current status of your most recent NFT request ("job") by default, or the status of the specific
job with unique job number n (an integer), or the range of jobs with numbers n-m inclusive (using a hyphen,
not a comma, as separator), or all members of the job class specified by any one job-class option opt listed
below.

Besides the job number(s) or job class you select, three other factors are relevant to the scope of RPT
status reports:

Record persistence

The NFT server remembers your jobs, their numbers, and their status for up to 4 days
before purging its records. So frequent NFT users will get reports on all members of
a job class throughout this time range, not just on the jobs started with their currently
running NFT client. If this is a problem, use CLR to overtly delete the old(er) records
that are no longer of interest.

Sessions Most NFT uses have only one NFT session, and RPT reports on the jobs (job class
members) in that session. If you start multiple sessions, RPT reports only on the jobs
in your currently selected sesion, ignoring all your jobs in other sessions. This can
give you more control of your status reports or lead to confusion, depending on your
awareness of the sessions you have started. For details on the effect of multiple
sessions, see the Sessions section (keyword: sessions (page 32)).

Verbosity The NFT VERBOSE option (keyword: verbose-levels (page 30)) lets you specify
which state changes NFT reports interactively as it runs (e.g., when jobs begin as well
as when they end). VERBOSE does NOT, however, affect which jobs (or job class
members) NFT includes in RPT status reports, nor the amount of detail provided on
each job's status line. Thus VERBOSE does not change RPT's scope at all, although
it does change general NFT dialog.

ABT (page 39) (abort) and CLR (page 51) (clear) are NFT commands closely related to RPT. The NFT
STATUS (page 86) command reports on your environment-variable settings, not on your file-transfer jobs.

OPTIONS:
RPT accepts many job-class options opt to specify which set of your NFT jobs you want reported. But
RPT expects you to use these options ONE at a time: combined options (such as -ek or -ke) yield INcomplete
status reports or sometimes return just the warning message

job class? choose from -aichxoek. command rejected.

NFT Reference Manual - 81

Possible stand-alone job-classes on which you can request reports include:

-a all jobs that NFT remembers, regardless of state. [If you use multiple NFT sessions
(page 32), a rare practice, then -a selects only jobs in the current session, NOT in all
the sessions that you have created, and the other job-class options behave likewise.]

-i incomplete jobs, waiting to run or not finished running.

-h held jobs, incomplete jobs in the scheduling queue.

-x active jobs, incomplete jobs currently running.

-c complete jobs, that have successfully or unsuccessfully completed running.

-o okay jobs, those that have succesfully completed running.

-e error jobs, that have unsuccessfully completed running.

-k aborted jobs, those that were terminated by the user with ABT.

EXAMPLE:
A typical annotated example of output from RPT, with the format of each line explained, appears in part
of the Job Reporting section above (keyword: rpt-examples (page 28)).

NFT Reference Manual - 82

SESSION (Change NFT Sessions)
SYNTAX:

session nn | new

ROLE:
Closes your former NFT session (session 0 is the default) and opens a new one, in which the new session
number nn is associated with all your subsequent NFT commands. NFT numbers the jobs in each session
with an increasing sequence of integers that ignores all other sessions (so, e.g., each session may have an
unrelated job numbered 13).

You can reopen a former session by using its session number in this same command (e.g., SESSION
0 reopens that session and closes session 1 if issued while you are in session 1). Reopening a session lets
you check on its jobs with RPT (page 81) or start more jobs associated with it. Here

nn is an integer from 0 through 99 inclusive that uniquely identifies your session.

new causes NFT to choose an unique, unused session number for you, open that session,
and report the identifier chosen. Because NFT remembers your session numbers for
up to 4 days and because picking a session number already in use reopens that session
rather than creates a new one, you may sometimes want NFT to open a new session
by automatically picking a number for it that is guaranteed to be unused. To guarantee
a fresh session number, use

session new

NFT gives no overt confirmation when you close one session and open another (just the usual prompt
for input). And RPT status reports do not reveal which session they cover. So to discover which session
is now open (or to confirm a requested change of session) use NFT's STATUS (page 86) command, which
reports the current session number along with other NFT environment settings.

See the Sessions (page 32) section above for a complete analysis of the implications of using multiple
NFT sessions, especially if combined with multiple NFT clients or in batch jobs.

NFT Reference Manual - 83

SETLEV (Change Security Level)
SYNTAX:

setlev lev

ROLE:
(OBSOLETE) changes the apparent security level of the current NFT session to lev, where lev may be
any one of these:

1, u, or U designates an UNCLASSIFIED session.

2, p, or P designates a PARD (Protect As Restricted Data) session (the default level).

3, a, or A designates an ADMIN (Administrative) session.

4, c, or C designates a CONFIDENTIAL Restricted Data session.

5, s, or S designates a SECRET Restricted Data session.

SETLEV thus overrides the apparent security level that you may have specified with the execute-line
option -Slev when you first started your NFT client. NOTE: storage system changes in 1997 completely
disabled all NFT security levels. The -Slev and SETLEV options persist solely to prevent old scripts from
breaking; they have no practical effect on file transfers at all, and files do not inherit a security level from
the NFT session that transferred them.

SETLEV returns no confirmation message, so you must use the STATUS (page 86) command to report
or confirm the current apparent security level of your NFT session.

NFT has no SETCOS command to set your storage "class of service" (COS). SETLEV is not the same
as SETCOS, and in fact you cannot alter your default storage class of service (COS) in any way with NFT.
See the SETCOS section of the HPSS Manual (URL: http://www.llnl.gov/LCdocs/hpss) for details. See
the "Copies in Storage" section of EZSTORAGE (URL: http://www.llnl.gov/LCdocs/ezstorage) for how
this affects the number of copies that HPSS keeps of files that you store with NFT.

NFT Reference Manual - 84

http://www.llnl.gov/LCdocs/hpss
http://www.llnl.gov/LCdocs/ezstorage

SOURCE (Use Command File)
SYNTAX:

source pathname

ROLE:
Reads and executes all the NFT commands contained in the text file located at pathname, where

pathname is usually just the name of a file (e.g. extracoms) that you want NFT to read from the
current working directory on the machine where you are running the NFT client. If
you supply an absolute pathname (such as ~/projects/extracoms or
/usr/tmp/testdir5/input) then NFT uses that location instead.

When you use SOURCE NFT's normal response messages continue to appear at your terminal while
the commands in the file execute. (Note that the SOURCEd commands themselves do NOT echo at the
terminal: thus PUT test3 will NOT appear but NFT's response when test3 is stored will appear. This can
make some responses hard to interpret.)

Usually the commands in a SOURCE file are just what you might type at your terminal, one per line.
But you can construct condensed, annotated command files by using # as a comment sentinel, semicolon
as a command separator, and backslash (\) as a line-continuation flag (example below).

You can achieve an effect rather similar to using SOURCE by instead using file redirection (page 23)
on NFT's execute line when you first start your NFT client, but neither the commands in the input file nor
responses that arrive after your client ends will echo at your terminal with this alternative approach.

DEFAULTS:
SOURCE takes no options and there is no default input file.

EXAMPLE:
This example shows a simple 3-line command file for use with SOURCE, and a version altered (in
appearance but not effect) using three sentinel characters mentioned above. Thus

 clobber
 put test4
 get test6

and

 #shows special characters
 clobber;put test4;get tes\
 t6

are equivalent command files for use with SOURCE.

NFT Reference Manual - 85

STATUS (Report Environment Variables)
SYNTAX:

status

ROLE:
Reports a list of the current values of NFT's environment variables, including the current session number
and apparent security level. Most of the commands that toggle the values of these variables do not report
the result of their own action, so using STATUS is the best way to confirm changes you have made.

If you need information on the status of file transfers you have requested, use NFT's RPT (page 81)
command rather than STATUS.

EXAMPLE:
Here is a typical NFT response to a STATUS command.

R/Us: nft> status
Rtne: Connected to storage as jfk.
 Session: 0.
 Verbose: 76 (decimal), 4c (hexidecimal).
 Clobber: no.
 Job Execution mode: Synchronous.
 Group construct: closed.
 Input from: standard-in.
 Output to standard-out: yes.
 Output to log file: yes.

NFT Reference Manual - 86

SYNC (Run Jobs in Series)
SYNTAX:

sync

ROLE:
Begins synchronous mode. Since SYNC is the default setting whenever you run NFT, the SYNC command
serves chiefly to cancel a previous ASYNC (page 41) command. In SYNC mode, NFT executes all your
subsequent commands (jobs) strictly in series, always preserving the order in which you submitted them
(with three exceptions).

NFT supports these three exceptions to or exemptions from SYNC mode:

• multiple-file transfers using GET or PUT,

• command sets flanked by GROUP and ENDGR, and

• commands following ASYNC.

See the command-sequencing (page 17) section above for a comparative analysis of these SYNC exceptions.

The ASYNC, (page 41) GROUP, (page 62) and BLOCK (page 42) commands can all be used to
influence how NFT sequences its jobs. SYNC has no options and returns no mode confirmation, but you
can use NFT's STATUS (page 86) command at any time to discover your current SYNC/ASYNC setting,
which persists even across logical NFT "sessions (page 32)."

NFT Reference Manual - 87

TERM (Enable Terminal Output)
SYNTAX:

term

ROLE:
Causes NFT to display at your terminal output from its executed commands, as well as its interactive
prompt nft> for more input. TERM is NFT's default behavior, so you would normally need to use the overt
TERM command only to reverse your previous use of the NOTERM (page 72) command, which disables
terminal output.

TERM and NOTERM are mutually exclusive alternative settings for an NFT environment variable
that preserves your choice of behavior until you overtly change it (or terminate your NFT client). Only by
using separate NFT clients (not multiple sessions with one client) can you have two sets of environment
variable settings for two sets of NFT jobs at once. See the "sessions (page 32)" section for details.

TERM takes no options and returns no confirmation message, but its use restores the interactive nft>
prompts that are absent after NOTERM.

TIME (Report Current Time)
SYNTAX:

time

ROLE:
Reports the current system time (day, date, hour, minutes, seconds) on the machine where you are running
the NFT client.

NFT Reference Manual - 88

VERBOSE (Control State-Change Reports)
SYNTAX:

verbose mask

ROLE:
Specifies which changes of state for each file-transfer job NFT will report to you, where

mask is a 32-bit mask each of whose bits toggles the reporting of one kind of state change.
The mask's default value is decimal 76. To set the bits, see the table below.

NFT jobs pass through several states from submittal to completion, and you can control how finely
NFT reports on these changes of state by using its VERBOSE option. By default, NFT passes along transfer
statistics from the FTP daemon that actually moves files at NFT's request, as well as sending error and
abort diagnostic messages if a job completes unsuccessfully. But there are other state changes too, and you
can request messages about any or all of them by using the appropriate argument for VERBOSE. (VERBOSE
does not change the scope of jobs covered in status reports from RPT (page 81), nor the environment-variable
setting reports from STATUS (page 86).)

Each possible state change for an NFT job corresponds to one bit in a (32-bit) mask that VERBOSE
sets. You request diagnostic messages about a state change by setting its bit in the mask, and you set each
bit by using the decimal value shown in the table below. To request a combination of reports, ADD the
corresponding decimal values and use the sum as the argument for VERBOSE (for example, the default
combination of diagnostic messages corresponds to the sum 4+8+64=76).

Diagnostic
Meaning

Decimal
Value

State
Change

client has submitted job1Begin
job has completed successfully2Done
job has failed (unsuccessfully completed)4Error(*)
job was killed by user8Abort(*)
job was received by server16Accepted
----Reserved
FTP transfer amount and rate64Transfer

stats(*)
server has started job execution128Start
immediately reports in-progress errors in
secondary jobs

256Progress
errors

----Reserved

(*)Default verbosity (combination 76)

VERBOSE does not confirm your requests for different state-change reporting, so you must use NFT's
STATUS (page 86) command to verify the current NFT verbosity setting.

EXAMPLE:

NFT Reference Manual - 89

To see how changing the VERBOSE value changes the grain size of state-change reports during NFT
dialogs, compare this default-value exchange (VERBOSE 76)

 User: get test4
 Rtne: 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 nft>

with this maximum-value exchange for the same job (VERBOSE 479):

 User: get test4
 Rtne: 14.0. accept.
 14.0. begin ~/test4
 14.0. start ~/test4
 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 14.0. done. /tmp/jfk/test4
 nft>

The five commands ACLADD, ACLCLEAR, ACLREMOVE, ACLREPLACE, and ACLSHOW,
which were added to NFT to manage the access control lists of stored files in January, 2004, ceased working
when LC installed HPSS version 5.1 in September, 2004. They have all been discontinued because NFT
logs revealed that almost nobody ever used them even when they worked.

NFT Reference Manual - 90

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2004 The Regents of the University of California. All rights reserved.

NFT Reference Manual - 91

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 94).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where this program runs.
who Who to contact for assistance.

introduction Overview of NFT and this manual.

execute-line How to run NFT.
nft-usage Basic NFT execution tips, options.
nft-features NFT features, limits, assumptions.
examples Basic NFT sample sessions.

syntax Specifying files, hosts with path prefixes.
prefix Specifying files, hosts with path prefixes.

command-summary NFT commands compared, grouped.
option-summary NFT commands compared, grouped.
storage-defaulted General vs. storage-defaulted commands.
environment-variables Setting NFT envr. variables.
command-sequencing Series vs. parallel execution.
command-remoteness Local vs. server execution.

local-commands Locally (client) executed commands.
server-commands NFT server executed commands.
immediate-commands Commands executed without scheduling.
job-commands Commands scheduled by NFT server.

files NFT input and output files.
log-files Capturing (logging) NFT output.
output-files Capturing (logging) NFT output.

log-usage Using LOG and CLOG.
log-examples Logging techniques and samples.

input-files Inputting commands from files.
redirection-input Command file input by redirection.
source-usage Command file input using SOURCE.
file-interactions Effect of input files on log files.

job-status Job status, reporting, grouping.
job-identifiers NFT job numbers and classes.

job-numbers How NFT uniquely numbers jobs.
job-classes Hierarchy of NFT job classes.

job-reporting Making RPT job-status reports.
rpt-scope Changing scope of RPT reports.
rpt-examples RPT report format and examples.

verbose-levels Change-of-state verbosity control.

sessions Using NFT job sessions.
session-scope How sessions affect RPT report scope.
session-usage Multi-session techniques, effects.
session-transfer Sessions with multiple clients.

NFT Reference Manual - 92

scripts Using NFT within batch scripts.

commands Dictionary of NFT commands.
options Dictionary of NFT commands.
command-syntax NFT command syntax advice.
abt Abort Incomplete Jobs (command)
async Run Jobs in Parallel (command)
block Block or Delay Next Command (command)
cd Change Working Directory (command)
cdup Change Working Directory Up (command)
chgrp Change Groups (command)
chmod Change Permissions (command)
chown Change Owners (command)
clobber Enable File Overwriting (command)
clog Close Log File (command)
close Restore Remote Host (command)
clr Clear Completed Job Reports (command)
cp Copy/Transfer Files (command)
delete Remove Files (command)
dir List Directory Contents, Long (command)
endgr End Asynchronous Group (command)
get Retrieve Stored Files (command)
group Begin Asynchronous Group (command)
help Describe NFT Commands (command)
lcd Change Local Working Directory (command)
ln Create a Link (command)
log Open Log File (command)
ls List Directory Contents, Short (command)
mkdir Make Directories (command)
noclobber Disable File Overwriting (command)
noterm Disable Terminal Output (command)
open Change Remote Host (command)
put Store Local Files (command)
pwd Print Working Directory (command)
quit Terminate NFT Client (command)
rename Change File Name (command)
rmdir Remove Directories (command)
rpt Report Job Status (command)
session Change NFT Sessions (command)
setlev Change Security Level (command)
source Use Command File (command)
status Report Environment Variables (command)
sync Run Jobs in Series (command)
term Enable Terminal Output (command)
time Report Current Time (command)
verbose Control State-Change Reports (command)

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

NFT Reference Manual - 93

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
abt Abort Incomplete Jobs (command)
availability Where this program runs.
async Run Jobs in Parallel (command)
block Block or Delay Next Command (command)
cd Change Working Directory (command)
cdup Change Working Directory Up (command)
chgrp Change Groups (command)
chmod Change Permissions (command)
chown Change Owners (command)
clobber Enable File Overwriting (command)
clog Close Log File (command)
close Restore Remote Host (command)
clr Clear Completed Job Reports (command)
command-remoteness Local vs. server execution.
command-sequencing Series vs. parallel execution.
command-summary NFT commands compared, grouped.
command-syntax NFT command syntax advice.
commands Dictionary of NFT commands.
cp Copy/Transfer Files (command)
date The latest changes to this document.
delete Remove Files (command)
dir List Directory Contents, Long (command)
endgr End Asynchronous Group (command)
entire This entire document.
environment-variables Setting NFT envr. variables.
examples Basic NFT sample sessions.
execute-line How to run NFT.
file-interactions Effect of input files on log files.
files NFT input and output files.
get Retrieve Stored Files (command)
group Begin Asynchronous Group (command)
help Describe NFT Commands (command)
immediate-commands Commands executed without scheduling.
index The structural index of keywords.
input-files Inputting commands from files.
introduction Overview of NFT and this manual.
job-classes Hierarchy of NFT job classes.
job-commands Commands scheduled by NFT server.
job-identifiers NFT job numbers and classes.
job-numbers How NFT uniquely numbers jobs.
job-reporting Making RPT job-status reports.
job-status Job status, reporting, grouping.
lcd Change Local Working Directory (command)
ln Create a Link (command)
local-commands Locally (client) executed commands.
log Open Log File (command)
log-examples Logging techniques and samples.
log-files Capturing (logging) NFT output.
log-usage Using LOG and CLOG.
ls List Directory Contents, Short (command)

NFT Reference Manual - 94

mkdir Make Directories (command)
nft-features NFT features, limits, assumptions.
nft-usage Basic NFT execution tips, options.
noclobber Disable File Overwriting (command)
noterm Disable Terminal Output (command)
open Change Remote Host (command)
option-summary NFT commands compared, grouped.
options Dictionary of NFT commands.
output-files Capturing (logging) NFT output.
prefix Specifying files, hosts with path prefixes.
put Store Local Files (command)
pwd Print Working Directory (command)
quit Terminate NFT Client (command)
redirection-input Command file input by redirection.
rename Change File Name (command)
revisions The complete revision history.
rmdir Remove Directories (command)
rpt Report Job Status (command)
rpt-examples RPT report format and examples.
rpt-scope Changing scope of RPT reports.
scope Topics covered in this document.
scripts Using NFT within batch scripts.
server-commands NFT server executed commands.
session Change NFT Sessions (command)
session-scope How sessions affect RPT report scope.
session-transfer Sessions with multiple clients.
session-usage Multi-session techniques, effects.
sessions Using NFT job sessions.
setlev Change Security Level (command)
source Use Command File (command)
source-usage Command file input using SOURCE.
status Report Environment Variables (command)
storage-defaulted General vs. storage-defaulted commands.
sync Run Jobs in Series (command)
syntax Specifying files, hosts with path prefixes.
term Enable Terminal Output (command)
time Report Current Time (command)
title The name of this document.
verbose Control State-Change Reports (command)
verbose-levels Change-of-state verbosity control.
who Who to contact for assistance.

NFT Reference Manual - 95

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
12Oct04 commands Five ACL commands deleted.

index Keywords for ACL commands hidden.
storage-defaulted

 ACL commands deleted.
job-commands ACL commands deleted.
introduction Note about discontinued commands.

01Jun04 nft-features Two error-message formats noted.

20Jan04 nft-features Many details revised.
examples Output messages changed here, elsewhere.
commands Seven commands add -R option.
cp Added -d option.
chgrp No longer limited to storage.
chmod No longer limited to storage.
dir Many new format options.
ls Many new format options.
acladd New command added, shown.
aclclear New command added, shown.
aclremove New command added, shown.
aclreplace New command added, shown.
aclshow New command added, shown.
index New keywords for new commands.

29Jul03 introduction HTAR comparative role expanded.
get HTAR now gets from nonstorage archives.
put HTAR now puts into nonstorage archives.

09Oct02 availability NFT on Linux, Furnace replaces Forest.

20Jun02 nft-features Class of service, stored copies added.
delete Contrast with FTP's MDELETE noted.
setlev Class of service, stored copies added.

14Feb02 entire Names updated in all examples.

27Aug01 introduction HTAR role and manual noted.
get When to use HTAR instead of GET.
put When to use HTAR instead of PUT.

09Nov00 availability DEC becomes Compaq/DEC.
introduction All CRAY-based examples replaced.
commands All CRAY-based examples replaced.

24May00 scope EZSTORAGE relevance noted.
introduction EZSTORAGE relevance noted.
chgrp CHGRPSTG in EZSTORAGE noted.
chmod CHMODSTG in EZSTORAGE noted.

03Aug98 availability NFT now on open DECs, open IBM.
introduction Section expanded, clarified.
dir Four suboptions disabled.

NFT Reference Manual - 96

ls Four suboptions disabled.

20Nov97 availability Only client hosts accept NFT transfers.
nft-features Special characters added, limits revised.
storage-defaulted

 Keyword changed, OPEN role noted.
redirection-input

 Quoted commands explained, compared.
session-transfer

 SESSION NEW for batch noted.
command-syntax

 Cross references expanded.
open Undocumented command added.
close Undocumented command added.
commands Many cross refs to OPEN added.
scripts New script-use tips added.

29Sep97 availability NFT now on SCF IBM SP (SKY).

02Sep97 availability NFT now on all SCF DECs.

18Aug97 availability NFT now on OAK (SCF DEC) too.

03Jul97 execute-line -S security option persists disabled.
examples -S option deleted from sample.
setlev Command persists but role disabled.
status Sec. level reported but disabled.
redirection-input

 -S option deleted from example.
environment-variables

 SETLEV role changed.

21Nov96 commands Detailed NFT command dictionary added.
nft-usage More details added.
nft-features Suboption use clarified.
command-sequencing

 Example revised.
source-usage Example revised.

17Oct96 entire First edition of NFT reference manual.

TRG (12Oct04)

NFT Reference Manual - 97

UCRL-WEB-201529
LLNL Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (12Oct04) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

NFT Reference Manual - 98

http://www.llnl.gov/disclaimer.html

